Advertisement

Chinese Science Bulletin

, Volume 48, Issue 18, pp 1930–1933 | Cite as

Fabrication of the beam splitters for soft X-ray laser application

  • Zhanshan Wang
  • Yonggang Wu
  • Weixing Tang
  • Shuji Qin
  • Lingyan Chen
  • Xiangdong Xu
  • Yilin Hong
  • Shaojun Fu
  • Jie Zhu
  • Mingqi Cui
Reports

Abstract

The soft X-ray interferometry is completed by the Mach-Zehnder interferometer using a soft X-ray laser, and it is also an important method to measure the electron densities of a laser-produced plasma near the critical surface. It is apparently demonstrated in this paper that the incident angle of each optical element in the soft X-ray Mach-Zehnder interferometer should be near normal incidence based on the polarized characteristics of the soft X-ray multilayers, and the product of reflectivity and transmission of the beam splitter should be taken as a standard of design according to the structure of the soft X-ray Mach-Zehnder interferometer. The beam splitters used in the soft X-ray interferometry at 13.9 nm are fabricated using the ion beam sputtering. The figure error of the beam splitter has reached the nanometer magnitude, in which the product of reflectivity and transmission of the beam splitter is more than 1.6%.

Keywords

soft X-ray beam splitter multilayer interference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DaSilva, L. B., Barbee, T. W., Cauble, R. et al., Electron density measurements of high density plasma using soft X-ray laser interferometry, Phys. Rev. Lett., 1995, 74(20): 3991–3994.CrossRefGoogle Scholar
  2. 2.
    Ress, D., DaSilva, L. B., London, R. A., et al., Measurement of laser-plasma electron density with a soft X-ray laser deflectometer, Science, 1994, 265: 514–517.CrossRefGoogle Scholar
  3. 3.
    Cauble, R. DaSilva, Cauble, L. B., Barbee, T. W. et al., Micron-resolution radiography of laser-accelerated and X-ray heated foils with an X-ray laser, Phys. Rev. Lett., 1995, 74(19): 3816–3819.CrossRefGoogle Scholar
  4. 4.
    Wang, C., Gu, Y., Wang, S. J. et al., Experimental studies of Ni-like Ag X-ray laser and its application, High Power Laser and Particle Beams, 2002, 14(3): 381–384.Google Scholar
  5. 5.
    Wang, C., Fu, S. Z., Gu, Y. et al., A Moire deflectometer used to measure high temperature plasma electron density, High Power Laser and Particle Beams, 2000, 12(2): 467–470.Google Scholar
  6. 6.
    Wang, Z., Ma, Y., Researches on extreme ultraviolet multilayers fabrication, Optical Technology, 2001, 27(6): 532–534.Google Scholar
  7. 7.
    Slaughter, J. M., Schulze, D. W., Hills, C. R. et al., Structure and performance of Si/Mo multiplayer mirrors for the extreme ultraviolet, J. Appl. Phys., 1994, 76(4): 2144–2156.CrossRefGoogle Scholar
  8. 8.
    Streams, D. G., The scattering of X-rays from nonideal multilayer structures, J. Appl. Phys., 1989, 65(2): 491–506.CrossRefGoogle Scholar
  9. 9.
    Windt, D. L., Surface finish requirements for soft X-ray mirrors, Appl. Opt., 1994, 33(10): 2025–2034.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2003

Authors and Affiliations

  • Zhanshan Wang
    • 1
  • Yonggang Wu
    • 1
  • Weixing Tang
    • 1
  • Shuji Qin
    • 1
  • Lingyan Chen
    • 1
  • Xiangdong Xu
    • 2
  • Yilin Hong
    • 2
  • Shaojun Fu
    • 2
  • Jie Zhu
    • 3
  • Mingqi Cui
    • 3
  1. 1.Institute of Precision Optical Engineering, Department of PhysicsTongji UniversityShanghaiChina
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  3. 3.Institute of High Energy PhysicsBeijingChina

Personalised recommendations