Chinese Science Bulletin

, Volume 50, Issue 20, pp 2362–2368 | Cite as

Biodiversity of Early-Middle Ordovician acritarchs and sea level changes in South China



As the primary producers, acritarchs represent the base of the food chain in the Paleozoic marine ecosystem which links with the evolution of acritarchs. Based on high precision quantitative research, much information about Paleozoic marine ecosystem is provided. A quantitative analysis of Early-Middle Ordovician acritarch diversity changes in the Meitan Formation, Honghuayuan section, Tongzi, Guizhou is made and the the acritarch diversity curves are compared with sea level curves. We found that acritarch diversity changes were related to sea level changes during the Early-Middle Ordovician. Whereas sea level rose, and acritarch diversity also increased. An inshore-offshore model of acritarchs best explains the relative abundance changes of some acritarch taxa in relation to sea level changes.


acritarchs diversity sea level changes Early-Middle Ordovician South China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Servais, T., Li, J., Stricanne, L. et al., Acritarchs, in The Great Ordovician Biodiversification Event (eds. Webby, B. D., Paris, F., Droser, M. L. et al.), New York: Columbia University Press, 2004, 348–360.Google Scholar
  2. 2.
    Dale, B., Dinoflagellate cyst ecology: Modeling and geological application, in Palynology: Principles and Applications, Vol 3 (eds. Jansonius, J., McGregor, D. C.), Salt Lake City, Utah: American Association of Stratigraphic Palynologists Foundation, Publishers Press, 1996, 1249–1257.Google Scholar
  3. 3.
    Wall, D., Dale, B., Lohmann, G. P. et al., The environmental distribution of dinoflagellate cystes in mordern marine sediments from regions in the north and south Atlantic oceans and adjacent seas, Marine Micropaleont., 1977, 2(2): 121–200.CrossRefGoogle Scholar
  4. 4.
    Song, Y. C., Vegetation Ecology (in Chinese), Shanghai: East China Normal University Press, 2001, 1–673.Google Scholar
  5. 5.
    Whittaker, R. H., Evolution and measurement of species diversity, Taxon, 1972, 21: 213–251.CrossRefGoogle Scholar
  6. 6.
    Magurran, A. E., Ecoligical Diversity and Its Measurement, New Jersey: Princerton University Press, 1988, 1–179.Google Scholar
  7. 7.
    Webby, B. D., Cooper, R. A., Bergström, S. M. et al., Stratigraphic framework and Time Slices, in The Great Ordovician Biodiversification Event (eds. Webby, B. D., Paris, F., Droser, M. L. et al.), New York: Columbia University Press, 2004, 41–47.Google Scholar
  8. 8.
    Jacobson, S. R., Acritarchs as paleoenvironmental indicators in Middle and Upper Ordovician rocks from Kentucky, Ohio and New York, Journal of Paleontology, 1979, 53(5): 1197–1212.Google Scholar
  9. 9.
    Dorning, K. J., Silurian acritarch distribution in the Ludlovian shelf sea of South Wales and the Welsh borderland, in Microfossils from Recent and Fossil Shelf Seas (eds. Neale, J., Brasier, M.), Chichester: Ellis Horwood Ltd., 1981, 31–36.Google Scholar
  10. 10.
    Li, J., Servais, T., Yan, K. et al., A nearshore-offshore trend in the acritarch distribution of the Early-Middle Ordovician of the Yangtze Platform, S-China, Review of Palaeonbotany and Palynology, 2004, 130(1–4): 141–161.CrossRefGoogle Scholar
  11. 11.
    Du, Y. S., Tong, J. N., Paleontology and historical geology (in Chinese), Wuhan: China University of Geoscience Press, 1998, 1–212.Google Scholar
  12. 12.
    Vecoli, M., Palaeoenvironmental interpretation of microphytoplankton diversity trends in the Cambrian-Ordovician of the northern Sahara Platform, Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 160: 329–346.CrossRefGoogle Scholar
  13. 13.
    Tongiorgi, M., Yin, L. M., Di Milia, A., Lower Yushangian to Zhjiangian palynology of the Yangtze Gorges area (Daping and Huanghuaxhang sections), Hubei Province, South China, Palaeonotographica Abt. B, 2003, 266: 1–160.Google Scholar
  14. 14.
    Bambach, P. K., Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem, Paleobiology, 1993, 19(3): 372–397.Google Scholar
  15. 15.
    Sprangers, M., Dammers, N., Brinkhuis, H. et al., Mordern organic-walled dinoflagellate cyst distribution offshore NW Iberia; tracing the upwelling system, Review of Palaeobotany and Palynology, 2004, 128: 97–106.CrossRefGoogle Scholar
  16. 16.
    Molles, M. C., Ecology: Concepts and Applications, Beijing: Science Press. 2000, 1–509.Google Scholar
  17. 17.
    Chen, X., Rong, J. Y., Zhou, Z. Y., Ordovician Biostratigraphy of China, in Biostratigraphy of China (eds. Zhang, W. T., Chen, P. J., Palmor, A. R.), Beijing: Science Press, 2003, 121–171.Google Scholar
  18. 18.
    Chen, X., Graptolite depth zonation, Acta Palaeontologica Sinica (in Chinese with English abstract), 1990, 29(5): 507–526.Google Scholar
  19. 19.
    Xu, W. H., Depth zonation of Arenigian acritarchs in South China, Chinese Science Bulletin (in Chinese), 1996, 42(2): 156–159.Google Scholar
  20. 20.
    Vecoli, M., Le Herisse, A., Biostratigraphy, taxonomic diversity and patterns of morphological evolution of Ordovician acritarchs (organic-walled microphytoplankton) from the northern Gondwana margin in relation to palaeoclimatic and palaeogeographic changes, Earth-Science Reviews, 2004, 67: 267–311.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.Nanjing Institute of Geology and PaleontologyChinese Academy of SciencesNanjingChina
  2. 2.School of Earth and Space SciencesPeking UniversityBeijingChina
  3. 3.Gradate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations