Chinese Science Bulletin

, Volume 49, Issue 23, pp 2538–2542 | Cite as

Bioturbation in near-surface sediments from the COMRA Polymetallic Nodule Area: Evidence from excess210Pb measurements

  • Qunhui Yang
  • Huaiyang Zhou


In order to evaluate bioturbation in sediments from the COMRA Polymetallic Nodule Area in the northeast tropical Pacific, excess210Pb profiles in sediments cores collected with multiple corers during R/V DAYANGYIHAO Environmental Program Cruise in 1998 were measured by direct gamma assay using Ortec HPGe GWL series well-type coaxial low background intrinsic germanium detectors. A steady-state diffusion model of excess210Pb profiles suggests that bioturbation mixing depths and biodiffusion coefficients are 16 cm and 2.75 cm2/a in East Zone, and 6 cm and 0.26 cm2/a in West Zone, respectively. Furthermore, the observations of macrofauna and measurements of total organic carbon (TOC) content in sediments suggest that bioturbation is directly controlled by species and abundance of benthic fauna, such aspolychaete, and the bioturbation mixing depth and intensity are positively correlated with the organic matter content.


COMRA polymetallic nodule area bioturbation excess210Pb activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smith, C. R., Levin, L. A., Hoover, D. J. et al., Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea, Deep-Sea Research II, 2000, 47: 227–257.CrossRefGoogle Scholar
  2. 2.
    Berger, W. H., Heath, G. R., Vertical mixing in pelagic sediments, Journal of Marine Research, 1968, 26: 134–143.Google Scholar
  3. 3.
    Gardner, L. R., Sharma, P., Moore, W. S., A regeneration model for the effect of bioturbation by fiddler crabs on210Pb profiles in salt marsh sediments, Journal Environmental Radioactivity, 1987, 5: 25–36.CrossRefGoogle Scholar
  4. 4.
    Boudreau, B. P., Mean mixed depth of sediments: the wherefore and the why, Limnol. Oceanogr., 1998, 43(3): 524–526.CrossRefGoogle Scholar
  5. 5.
    Smith, C. R., Rabouille, C., What controls the mixed-layer depth in deep-sea sediments? The importance of POC flux, Limnol. Oceanogr., 2002, 47(2): 418–426.Google Scholar
  6. 6.
    Weaver, P. P. E., Schultheiss, P. J., Vertical open burrows in deep-sea sediments 2m in length, Nature, 1983, 301: 329–331.CrossRefGoogle Scholar
  7. 7.
    Aller, R. C., The effects of macrobenthos on chemical properties of marine sediment and overlying water, Animal-Sediment-Relations (eds. McCall, P. L., Tevesz, M. S. S.), New York: Plenum Publishing Co., 1982, 53–102.Google Scholar
  8. 8.
    Aller, R. C., Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation, Chemical Geology, 1994, 114: 331–345.CrossRefGoogle Scholar
  9. 9.
    Wheatcroft, R. A., Jumars, P. A., Smith, C. R. et al., A mechanistic view of the particulate biodiffusion coefficient: step lengths, rest periods and transport directions, Journal of Marine Research, 1990, 48: 177–207.CrossRefGoogle Scholar
  10. 10.
    Smith, C. R., Pope, R. H., DeMaster, D. J. et al., Age-dependent mixing of deep-sea sediments, Geochimica et Cosmochimica Acta, 1993, 57: 1473–1488.CrossRefGoogle Scholar
  11. 11.
    Henderson, G. M., Lindsay, F. N., Slowey, N. C., Variation in bioturbation with water depth on marine slopes a study on the Little Bahamas Bank, Marine Geology, 1999, 160: 105–118.CrossRefGoogle Scholar
  12. 12.
    Huston, W. H., Bioturbation of deep-sea sediments: Oxygen isotopes and stratigraphic uncertainty, Geology, 1980, 8: 127–130.CrossRefGoogle Scholar
  13. 13.
    Li, F. Y., Tan, C. W., Shi, Y. L. et al., Mixing rate of sediment in the Okinawa Trough, Marine Science (in Chinese), 1996, 6: 54–57.Google Scholar
  14. 14.
    Jung, H. S., Lee, C. B., Jeong, K. S. et al., Geochemical and mineralogical characteristics in two-color core sediments from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific, Marine Geology, 1998, 144: 295–309.CrossRefGoogle Scholar
  15. 15.
    Appleby, P. G., Nolan, P. J., Gifford, D. W. et al.,210Pb dating by low background gamma counting, Hydrobiologia, 1986, 141: 21–27.CrossRefGoogle Scholar
  16. 16.
    Goldberg, E. D., Koide, M., Geochronological studies of the deep-sea sediments by the ionium-thorium method, Geochimica et Cosmochimica Acta, 1962, 26: 417–443.CrossRefGoogle Scholar
  17. 17.
    Guinasso, Jr. N. L., Schink, D. R., Quantitative estimates of biological mixing rates in abyssal sediments, Journal of Geophysical Research, 1975, 80(21): 3032–3043.CrossRefGoogle Scholar
  18. 18.
    Nozaki, Y., Cochran, J. K., Turekian, K. K. et al., Radiocarbon and210Pb distribution in submersible-taken deep-sea cores from project famous, Earth and Planetary Science Letters, 1977, 34: 167–173.CrossRefGoogle Scholar
  19. 19.
    Boudreau, B. P., Mathematics of tracer mixing in sediments: I. Spatially dependent diffusive mixing. American Journal of Science, 1986a, 286: 161–198Google Scholar
  20. 20.
    Pope, R. H., Demaster, D. J., Smith, C. R. et al., Rapid bioturbation in equatorial Pacific sediments: evidence from excess234Th measurements, Deep-Sea Research II, 1996, 43(4–6): 1339–1364.CrossRefGoogle Scholar
  21. 21.
    Smith, J. N., Schaffer, C. T., Bioturbation processes in continental slope and rise sediments delineated by210Pb, microfossil and textural indicators, Journal of Marine Research, 1984, 42: 1117–1145.CrossRefGoogle Scholar
  22. 22.
    Aller, J. Y., Aller, R. C., Evidence for localized enhancement of biological activity associated with tube and burrow structure in deep-sea sediments at the HEBBLE site, western North Atlantic, Deep-Sea Research, 1986, 33: 755–790.CrossRefGoogle Scholar
  23. 23.
    Smith, J. N., Boudreau, B. P., Noshkin, V., Plutonium and210Pb distribution in northeast Atlantic sediments: subsurface anomalies caused by non-local mixing, Earth and Planetary Science Letters, 1986/87, 81: 15–28.CrossRefGoogle Scholar
  24. 24.
    Boudreau, B. P., Mathematics of tracer mixing in sediments: II. Non-local mixing and biological conveyor belt phenomena, American Journal of Science, 1986b, 286: 199–238.Google Scholar
  25. 25.
    Smith, C. R., Levin, L. A., Hoover, D. J. et al., Variations in bioturbation across the oxygen minimum zone in the northwest Arabian Sea, Deep-Sea Research II, 2000, 47: 227–257.CrossRefGoogle Scholar
  26. 26.
    Smith, C. R., Berelson, W., Demaster, D. J. et al., Latitudinal variations in benthic processes in the abyssal equatorial Pacific: Control by biogenic particle flux, Deep-Sea Research II, 1997, 44: 2295–2317.CrossRefGoogle Scholar
  27. 27.
    Suckow, A., Treppkeb, U., Wiedickeb, M. H. et al., Bioturbation coefficients of deep-sea sediments from the Peru Basin determined by gamma spectrometry of210Pbexc, Deep-Sea Research II, 2001, 48: 3569–3592.CrossRefGoogle Scholar
  28. 28.
    Turnewitsch, R., Witte, U., Graf, G., Bioturbation in the abyssal Arabian Sea: influence of fauna and food supply, Deep-Sea Research II, 2000, 47: 2877–2911.CrossRefGoogle Scholar
  29. 29.
    Wheatcroft, R. A., Smith, C. R., Jumars, P. A., Dynamics of surficial trace assemblages in the deep sea, Deep-Sea Research, 1989, 36(1): 71–91.CrossRefGoogle Scholar
  30. 30.
    Gage, J. D., Tyler, P. A., Deep-Sea Biology—A Natural History of Organisms at the Deep-Sea Floor, Cambridge: Cambridge University Press, 1991, 337–356.Google Scholar
  31. 31.
    Legeleux, F., Reyss, J. L., Schmidt, S., Particle mixing rates in sediments of the northeast tropical Atlantic: Evidence From210Pb,137Cs,228Th and234Th downcore distributions, Earth and Planetary Science Letters, 1994, 128: 545–562.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  1. 1.Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina

Personalised recommendations