Chinese Science Bulletin

, Volume 50, Issue 22, pp 2602–2611 | Cite as

Hf isotopes of zircon megacrysts from the Cenozoic basalts in eastern China

  • Zhili Qiu
  • Fuyuan Wu
  • Qingyuan Yu
  • Liewen Xie
  • Shufeng Yang


Cenozoic basalts are widely distributed in eastern China, and some of them contain zircon megacrysts which are considered to be constituent mineral of the subcontinental lithospheric mantle (SCLM) and petrogenetically related to mantle metasomatism induced by addition of crustal materials. Using the Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICPMS), zircon megacrysts from the Cenozoic basalts at Changle in Shandong, Mingxi in Fujian, and Penglai in Hainan provinces have been used for Hf isotopic analyses. The data indicate that there is no significant deviation for the different zircon grains in each locale, except those from Penglai. The obtained176Hf /177Hf ratios are 0.28302–0.28308 for Changle, 0.28297–0.28300 for Mingxi, and 0.28288–0.28293 for Penglai, with correspondingεHf values of 8.7–10.8, 7.0–7.9, and 3.9–5.7, respectively. These data display that there existed some regional heterogeneity, but the Hf model ages clustere in the Phanerozoic. Therefore, it is inferred that metasomatism of the lithospheric mantle beneath eastern China took place in the Phanerozoic, most probably in the Mesozoic-Cenozoic. However, the formation time of the lithospheric mantle is not clearly constrained based on the present Hf isotopic data.


Hf isotopes zircon megacryst lithospheric mantle Cenozoic basalt eastern China 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, D. L., Lithosphere, asthenosphere, and perisphere, Rev. Geophy., 1995, 33: 125–149.CrossRefGoogle Scholar
  2. 2.
    Griffin, W. L., O’Reilly, S. Y., Ryan, C. G., The composition and origin of subcontinental lithospheric mantle, in: Mantle petrology: Field Observations and High-Pressure Experimentation (eds. Fei, Y., Bertka, C. M., Mysen, B. O.), The Geochemical Society, Special Publication, 1999, 6: 13–43.Google Scholar
  3. 3.
    Pearson, D. G., Canil, D., Shirey, S. B., Mantle samples included in volcanic rocks: Xenoliths and diamonds, in: The Mantle and Core (ed. Carlson, R. W.), Treatise on Geochemistry, 2003, 2: 171–275.Google Scholar
  4. 4.
    Carlson, R. W., Pearson, D. G., James, D. E., Physical, chemical, and chronological characteristics of continental mantle, Rev. Geophy, 2005, 43: 2004RG000156.CrossRefGoogle Scholar
  5. 5.
    Chi, J. S., The study of the Cenozoic basalts and upper mantle beneath eastern China, Wuhan: China University of Geosciences Press, 1988, 1–277.Google Scholar
  6. 6.
    El, M. L., Zhao, D. S., Cenozoic basalts and deep sources xenoliths in eastern China, Beijing: Science Press, 1987, 1–490.Google Scholar
  7. 7.
    Liu, R. X., Geochronology and geochemistry on the Cenozoic basalts in China, Beijing: Seismic Press, 1992, 1–427.Google Scholar
  8. 8.
    Zhang, H. P., Li, F. T., Li, J., Research on gem-quality zircon from Changle, Shandong Province, J. Gems. Gemmol., 2001, 3(4): 30–32.Google Scholar
  9. 9.
    Tang, D. P., Heat treatment of zircons from Mingxi, Fujian, Acta Mineral Sinica, 2001, 21: 521–524.Google Scholar
  10. 10.
    Qiu, Z. L., Gong, S. W., Yu, Q. Y. et al., Baddeleyite and Zircon Mineral Inclusions: Evidence for the genesis of zircon megacrysts related to Cenozoic volcanic rocks in Mingxi, Fujian, Acta Scientiarum Naturalium Universitatis Sunyatsenti, 2004, 43: 135–139.Google Scholar
  11. 11.
    Sun, J. X., Basalts related to ruby and sapphire in eastern Heilongjiang and reconstruction of Paleovolcanic mechanism, Acta Petrol. Mineral., 1995, 14: 126–132.Google Scholar
  12. 12.
    Cao, S. E., Zhang, C. H., Geological characteristics and quality evalution of the Hongbaogou precious garnet placer in Shuangyashan, Geol. Building Material, 1996, (3): 22–26.Google Scholar
  13. 13.
    Sun, J. X., Basalts related to ruby and sapphire in eastern Heilongjiang and reconstruction of paleovolcanic mechanism, Acta. Patrol. Mineral, 1995, 14: 126–132.Google Scholar
  14. 14.
    Zou, J. F., Yuan, K. R., Genetic model for sapphire-including Cenozoic basalts in western Shandong, J. Guilin Inst. Tech., 1991, (suppl): 17–27.Google Scholar
  15. 15.
    Qiu, Z. L., Qin, S. C., Pang, X. B., The genesis of corundum megacrysts related to alkaline basalt in Hainan, Acta Scientiarum Naturalium Universitatis Sunyatsenti, 1995, 34: 95–101.Google Scholar
  16. 16.
    Ho, K. S., Chen, J. C., Lo, C. H. et al.,40Ar–39Ar dating and geochemical characteristics of late Cenozoic basaltic rocks from the Zhejiang-Fujian region, SE China: eruption ages, magma evolution and petrogenesis, Chem. Geol., 2003, 197: 287–318.CrossRefGoogle Scholar
  17. 17.
    Tatsumoto, M., Basu, A. R., Huang, W. K. et al., Sr, Nd, and Pb isotopes of ultramafic xenoliths in volcanic rocks of eastern China: enriched components EMI and EMU in subcontinental lithosphere, Earth Planet. Sci. Lett, 1992, 113: 107–128.CrossRefGoogle Scholar
  18. 18.
    Qi, Q., Taylor, L. A., Zhou X., Petrology and geochemistry of mantle peridotite xenoliths from SE China, J. Petrol., 1995, 36: 55–79.Google Scholar
  19. 19.
    Zou, H., Zindler, A., Xu, X., Major, trace element, and Nd-Sr-Pb isotope studies of Cenozoic basalts in SE China: mantlesources, regional variations, and tectonic significance, Chem. Geol., 2000, 171: 33–47.CrossRefGoogle Scholar
  20. 20.
    Xu, X. S., O’Reilly, S. Y., Griffin, W. L. et al., Genesis of young lithospheric mantle in Southeastern China: an LAM-ICPMS trace element study, J. Petrol., 2000, 41: 111–148.CrossRefGoogle Scholar
  21. 21.
    Xu, X. S., O’Reilly, S. Y., Griffin, W. L. et al., Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China, Chem. Geol., 2003, 198: 163–188.CrossRefGoogle Scholar
  22. 22.
    Huang, X. D., Chen, Z. P., Zhong, S. Z., Characteristics of volcanic rocks and relationship with the sapphire deposit in Penglai, Hainan, Geol. Mineral Res. S. China, 1997, (3): 39–45.Google Scholar
  23. 23.
    Tu, K., Flower, M. F. J., Carlson, R. W. et al., Sr, Nd and Pb isotopic compositions of Hainan Basalts (South China): implications for subcontinental lithosphere Dupai source, Geology, 1991, 19: 567–569.CrossRefGoogle Scholar
  24. 24.
    Ho, K. S., Chen, J. C., Juang, W. S., Geochronology and geochemistry of late Cenozoic basalts from the Leiqiong area, Southern China, J. Asian Earth Sci., 2000, 18: 307–324.CrossRefGoogle Scholar
  25. 25.
    Xu, Y. G., Sun, M., Yan, W. et al., Xenolith evidence for polybaric melting and stratification of the upper mantle beneath south China, J. Asian Earth Sci., 2002, 20: 937–854.CrossRefGoogle Scholar
  26. 26.
    Belousova, E. A., Griffin, W. L., O’Reilly, S. Y. et al., Igneous zircon: trace element composition as an indicator of source rock type, Contrib. Mineral. Petrol., 2002, 143: 602–622.Google Scholar
  27. 27.
    Xu, P., Wu, F. Y., Xie, L. W. et al., Hf isotopic compositions of the standard zircons for U-Pb dating, Chin. Sci. Bull., 2004, 49: 1642–1648.CrossRefGoogle Scholar
  28. 28.
    Goolaerts, A., Mattielli, N., de Jong, J. et al., Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS, Chem. Geol., 2004, 206: 1–9.CrossRefGoogle Scholar
  29. 29.
    Woodhead, J., Hergt, J., Shelley, M. et al., Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geometries, and concomitant age estimation, Chem. Geol., 2004, 209: 121–135.CrossRefGoogle Scholar
  30. 30.
    Iizuka, T., Hirata, T., Improvements of precision and accuracy inin situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique, Chem. Geol., 2005, 220: 121–137.CrossRefGoogle Scholar
  31. 31.
    Nebel-Jacobsen, Y., Scherer, E. E., Munker, C. et al., Separation of U, Pb, Lu, and Hf from single zircons for combined U-Pb dating and Hf isotope measurements by TIMS and MC-ICPMS, Chem. Geol., 2005, 220: 105–120.CrossRefGoogle Scholar
  32. 32.
    Griffin, W. L., Pearson, N. J., Belousova, E. et al., The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites, Geochim. Cosmochim. Acta, 2000, 64: 133–147.CrossRefGoogle Scholar
  33. 33.
    Kresten, P., Fels, P., Berggren, G., Kimberlitic zircons a possible aid in prospecting for kimberlites, Mineral Dep., 1975, 10: 47–56.CrossRefGoogle Scholar
  34. 34.
    Krasnobayev, A. A., Mineralogical-chemical features of zircons from kimberlites and problems of their origin, Inter. Geol. Rev., 1980, 22: 1199–1209.CrossRefGoogle Scholar
  35. 35.
    Kinny, P. D., Compston, W., Bristow, J. W. et al., Archaean mantle xenocrysts in a Permian kimberlite: two generations of kimberlitic zircon in Jwaneng DK2, southern Botswana, in: Kimberlites and Related Rocks (ed. Ross, J.), Geol. Soc. Austral Spec. Publ., 1989, 14: 833–842.Google Scholar
  36. 36.
    Konzett, J., Armstrong, R. A., Sweeney, R. J. et al., The timing of MARID metasomatism in the Kaapvaal mantle: an ion probe study of zircons from MARID xenoliths, Earth Planet. Sci. Lett., 1998, 160: 133–145.CrossRefGoogle Scholar
  37. 37.
    Konzett, J., Armstrong, R. A., Gunther, D., Modal metasomatism in the Kaapvaal craton lithosphere: constraints on timing and genesis from U-Pb zircon dating of metasomatised peridotites and MARID-type xenoliths, Contrib. Mineral. Petrol., 2000, 139: 704–719.CrossRefGoogle Scholar
  38. 38.
    Valley, J. W., Kinny, P. D., Schulze, D. J. et al., Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts, Contrib. Mineral. Petrol., 1998, 133: 1–11.CrossRefGoogle Scholar
  39. 39.
    Upton, B. G. J., Hintoni, R. W., Aspeni, P. et al., Megacrysts and associated xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland, J. Petrol., 1999, 40: 935–956.CrossRefGoogle Scholar
  40. 40.
    Davies, G. R., Spriggs, A. J., Nixon, P. H., A non-cognate origin for the Gibeon kimberlite megacryst suite, Namibia: implications for the origin of Namibian kimberlites, J. Petrol., 2001, 42: 159–172.CrossRefGoogle Scholar
  41. 41.
    Dawson, J. B., Hill, P. G., Kinny, P. D., Mineral chemistry of a zircon-bearing composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite, Contrib. Mineral. Petrol., 2001, 140: 720–733.Google Scholar
  42. 42.
    Spetsius, Z. V., Belousova, E. A., Griffin, W. L. et al., Archean sulfide inclusions in Paleozoic zircon megacrysts from the Mir kimberlite, Yakutia: implications for the dating of diamonds, Earth Planet. Sci. Lett., 2002, 199: 111–126.CrossRefGoogle Scholar
  43. 43.
    Liati, A., Franz, L., Gebauer, D. et al., The timing of mantle and crustal events in South Namibia, as defined by SHRIMP-dating of zircon domains from a garnet peridotite xenolith of the Gibeon Kimberlite Province, J. African Earth Sci., 2004, 39: 147–157.CrossRefGoogle Scholar
  44. 44.
    Nowell, G. M., Kempton, P. D., Noble, S. R. et al., High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle, Chem. Geol., 1998, 149: 211–233.CrossRefGoogle Scholar
  45. 45.
    Graham, S., Lambert, D. D., Shee, S. R. et al., Juvenile lithospheric mantle enrichment and the formation of alkaline ultramafic magma sources: Re-Os, Lu-Hf and Sm-Nd isotopic systematics of the Norseman melnoites, Western Australia, Chem. Geol., 2002, 186: 215–233.CrossRefGoogle Scholar
  46. 46.
    Nowell, G. M., Pearson, D. G., Bell, D. R. et al., Hf isotope systematics of kimberlites and their megacrysts: New constraints on their source regions, J. Petrol., 2004, 45: 1583–1612.CrossRefGoogle Scholar
  47. 47.
    Blichert-Toft, J., Albarede, F., Kornprobst, J., Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: Implications for basalt origin, Science, 1999, 283: 1303–1306.CrossRefGoogle Scholar
  48. 48.
    Blichert-Toft, J., Ionov, D. A., Albarede, F., The nature of the sub-continental lithospheric mantle: Hf isotope evidence from garnet peridotite xenoliths from Siberia, J. Conf. Abstr., 2000, 5: A217.Google Scholar
  49. 49.
    Bedini, R. M., Blichert-Toft, J., Boyet, M. et al., Lu-Hf isotope geochemistry of garnet-peridotite xenoliths from the Kaapvaal eraton and the thermal regime of the lithosphere, Geochim. Cosmochim. Acta, 2002, 66 (SI): A61.Google Scholar
  50. 50.
    Simon, N. S. C., Carlson, R. W., Pearson, D. G. et al., The Lu-Hf isotope composition of cratonic lithosphere: disequilibrium between garnet and clinopyroxene in kimberlite xenoliths, Geochim. Cosmochim. Acta, 2002, 66 (SI): A717.Google Scholar
  51. 51.
    Pearson, D. G., Nowell, G. M., Re-Os and Lu-Hf isotope constraints on the origin and age of pyroxeneites from the Beni Bousera peridotite Massif: implications for mixed peridotite-pyroxenite mantle sources, J. Petrol., 2004, 45: 439–455.CrossRefGoogle Scholar
  52. 52.
    Ionov, D. A., Blichert-Toft, J., Weis, D., Hf isotope compositions and HREE variations in off-craton garnet and spinel peridotite xenoliths from central Asia, Geochim. Cosmochim. Acta, 2005, 69: 2399–2418.CrossRefGoogle Scholar
  53. 53.
    Schmidberger, S. S., Simonetti, A., Francis, D. et al., Probing Archean lithosphere using the Lu-Hf isotope systematics of peridotite xenoliths from Somerset Island kimberlites, Canada, Earth Planet. Sci. Lett., 2002, 197: 245–259.CrossRefGoogle Scholar
  54. 54.
    Salters, V. J. M., Zindler, A., Extreme176HI/177Hf in the sub-oceanic mantle, Earth Planet. Sci. Lett, 1995, 129: 13–30.CrossRefGoogle Scholar
  55. 55.
    Bizimis, M., Sen, G., Salters, V. J. M., Hf-Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaii. Earth Planet. Sci. Lett., 2003, 217: 43–58.CrossRefGoogle Scholar
  56. 56.
    Bedini, R. M., Blichert-Toft, J., Boyet, M. et al., Isotopic constraints on the cooling of the continental lithosphere, Earth Planet. Sci. Lett., 2004, 223: 99–111.CrossRefGoogle Scholar
  57. 57.
    Pearson, D. G., Nowell, G. M., Ottley, C. J., Dating mantle melting using the Lu-Hf isotope system, Geochim Cosmochim Acta, 2005, 69(10S): A287.Google Scholar
  58. 58.
    Scharer, U., Corfu, F., Demaiffe, D., U-Pb and Lu-Hf isotopes in baddeleyite and zircon megacrysts from the Mbuji-Mayi kimberlite: Constraints on the subcontinental mantle, Chem. Geol., 1997, 143: 1–16.CrossRefGoogle Scholar
  59. 59.
    Belousova, E. A., Griffin, W. L., Shee, S. R. et al., Two age populations of zircons from the Timber Creek kimberlite, Northern Territory, as determined by laser-ablation ICP-MS analysis, J. Australian Earth Sci., 2001, 48: 757–765.Google Scholar
  60. 60.
    Kinny, P. D., Maas, R., Lu-Hf and Sm-Nd isotope systems in zircon, in: Zircon (eds., Hanchar, J. M., Hoskin, P. W. O.), Rev. Mineral. Geochem., 2003, 53: 327–341.Google Scholar
  61. 61.
    Heaman, L. M., Kjarsgaard, B. A., Creaser, R. A., The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration, Lithos, 2003, 71: 153–184.CrossRefGoogle Scholar
  62. 62.
    Belousova, E. A., Griffin, W. L., Pearson, N. J., Trace element composition and cathodoluminescence properties of southern African kimberlitic zircons, Mineral. Mag., 1998, 62: 355–366.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  • Zhili Qiu
    • 1
    • 3
  • Fuyuan Wu
    • 2
  • Qingyuan Yu
    • 3
  • Liewen Xie
    • 2
  • Shufeng Yang
    • 1
  1. 1.Department of Earth SciencesZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Lithospheric Evolution, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of GeosciencesSun Yat-sen UniversityGuangzhouChina

Personalised recommendations