Science in China Series C: Life Sciences

, Volume 48, Issue 3, pp 221–227 | Cite as

Gene expression and molecular characterization of a thermostable trehalose phosphorylase fromThermoanaerobacter tengcongensis

  • Yuanyuan Ren
  • Xiuyu Dai
  • Jian Zhou
  • Jingfang Liu
  • Huadong Pei
  • Hua Xiang


A gene encoding the trehalose phosphorylase (TreP), which reversibly catalyzes trehalose degradation and synthesis from α-glucose-1-phosphate (α-Glc-1-P) and glucose, was cloned fromThermoanaerobacter tengcongensis and successfully expressed inEscherichia coli. The overexpressed TreP, with a molecular mass of approximately 90 kDa, was determined by SDS-PAGE. It catalyzes trehalose synthesis and degradation optimally at 70°C (for 30 min), with the optimum pHs at 6.0 and 7.0, respectively. It is highly thermostable, with a 77% residual activity after incubation at 50°C for 7 h. Under the optimum reaction conditions, 50 μg crude enzyme of the TreP is able to catalyze the synthesis of trehalose up to 11.6 mmol/L from 25 mmol/L α-Glc-1-P and 125 mmol/L glucose within 30 min, while only 1.5 mmol/L out of 250 mmol/L trehalose is degraded within the same time period. Dot blotting revealed that thetreP gene inT. tengcongensis was upregulated in response to salt stress but downregulated when trehalose was supplied. Both results indicate that the dominant function of theT. tengcongensis TreP is catalyzing trehalose synthesis but not degradation. Thus it might provide a novel route for industrial production of trehalose.


gene expression Thermoanaerobacter tengcongensis trehalose phosphorylase dot blot 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Singer, M. A., Lindquist, S., Thermotolerance inSaccharomyces cerevisiae: The Yin and Yang of trehalose, Trends. Biotechnol., 1998, 16(11): 460–468.CrossRefPubMedGoogle Scholar
  2. 2.
    Elbein, A. D., Pan, Y. T., Pastuszak, I. et al., New insights on trehalose: A multifunctional molecule, Glycobiology, 2003, 13(4): 17R-27R.CrossRefPubMedGoogle Scholar
  3. 3.
    Schiraldi, C., Di Lernia, I., De Rosa, M., Trehalose production: exploiting novel approaches, Trends. Biotechnol., 2002, 20(10): 420–425.CrossRefPubMedGoogle Scholar
  4. 4.
    De Smet, K. A., Weston, A., Brown, I. N. et al., Three pathways for trehalose biosynthesis in mycobacteria, Microbiology, 2000, 146: 199–208.PubMedGoogle Scholar
  5. 5.
    Page-Sharp, M., Behm, C. A., Smith, G. D., Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterialScytonema species isolated from desert soils, Biochim. Biophys. Acta, 1999, 1472: 519–528.PubMedGoogle Scholar
  6. 6.
    Maruta, K., Mukai, K., Yamashita, H. et al., Gene encoding a trehalose phosphorylase fromThermoanaerobacter brockii ATCC 35047, Biosci. Biotechnol. Biochem., 2002, 66(9): 1976–1980.CrossRefPubMedGoogle Scholar
  7. 7.
    Han, S. E., Kwon, H. B., Lee, S. B. et al., Cloning and characterization of a gene encoding trehalose phosphorylase (TreP) fromPleurotus sajor-caju., Protein. Expr. Purif., 2003, 30(2): 194–202.CrossRefPubMedGoogle Scholar
  8. 8.
    Xue, Y., Xu, Y., Liu, Y. et al.,Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China, Int. J. Syst. Evol. Microbiol., 2001, 51: 1335–1341.Google Scholar
  9. 9.
    Bao, Q., Tian, Y., Li, W. et al., A complete sequence of theT. tengcongensis genome, Genome Res., 2002, 12(5): 689–700.CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang, J., Liu, J., Zhou, J. et al., Thermostable esterase fromThermoanaerobacter tengcongensis: High-level expression, purification and characterization, Biotechnology Letters, 2003, 25: 1463–1467.CrossRefPubMedGoogle Scholar
  11. 11.
    Sambrook, J., Fritsch, E. F., Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., New York: Cold Spring Harbor Laboratory Press, 1989.Google Scholar
  12. 12.
    Zhou, M., Xiang, H., Sun, C. et al., Complete sequence and molecular characterization of pNB101, a rolling-circle replicating plasmid from the haloalkaliphilic archaeonNatronobacterium sp. strain AS7091, Extremophiles, 2004, 8(2): 91–98.CrossRefPubMedGoogle Scholar
  13. 13.
    Papadopoulos, N. M., Hess, W. C., Determination of neuraminic (sialic) acid, glucose and fructose in spinal fluid, Arch. Biochem. Biophys., 1960, 88: 167–171.CrossRefPubMedGoogle Scholar
  14. 14.
    Rolim, M. F., de Araujo, P. S., Panek, A. D. et al., Shared control of maltose and trehalose utilization inCandida utilis, Braz. J. Med. Biol. Res., 2003, 36(7): 829–837.CrossRefPubMedGoogle Scholar
  15. 15.
    Wolf, A., Kramer, R., Morbach, S., Three pathways for trehalose metabolism inCorynebacterium glutamicum ATCC13032 and their significance in response to osmotic stress, Mol. Microbiol., 2003, 49(4): 1119–1134.CrossRefPubMedGoogle Scholar

Copyright information

© Science in China Press 2005

Authors and Affiliations

  1. 1.State Key Laboratory of Microbial Resources and Center for Molecular Microbiology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina

Personalised recommendations