Chinese Science Bulletin

, Volume 49, Issue 22, pp 2429–2434 | Cite as

Miniaturized volume holographic optical data storage and correlation system with a storage density of 10 Gb/cm3

  • Liangcai Cao
  • Qingsheng He
  • Haoyun Wei
  • Guodong Liu
  • Chuan Ouyang
  • Jian Zhao
  • Minxian Wu
  • Guofan Jin


The general idea of holographic optical data storage (HODS) is briefly introduced. Based on the recent advances of HODS, the key techniques and the challenges of HODS are discussed. Some new techniques are proposed to improve the system. A miniaturized volume holographic data storage and correlation system is presented. It can achieve a density of 10 Gb/cm3 and a fast correlation recognition rate of more than 2000 images per second. It shows the attracting potential advantages over other conventional storage methods in the information storage as well as information processing.


optical data storage photorefractive material correlation recognition volume holography information processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Terris, B. D., Mamin, H. J., Rugar, D., Near-field optical data storage, Appl. Phy. Lett., 1996, 68(2): 141–143.CrossRefGoogle Scholar
  2. 2.
    Van Heerden, P. J., Theory of optical information storage in solids, Appl. Opt., 1963, (2): 393–400.Google Scholar
  3. 3.
    Burr, G. W., Jefferson, C. M., Coufal, H. et al., Volume holographic data storage at an areal density of 250 gigapixels/in2, Opt. Lett., 2001, 26(7): 444–446.CrossRefGoogle Scholar
  4. 4.
    Coufal, H. J., Psaltis, D., Sincerbox, G. T., Holographic Data Storage, New York: Springer-Verlag Burlin Heidelberg, 2000, 3–20.Google Scholar
  5. 5.
    Heanue, J. F., Bashaw, M. C., Hesselink, L., Volume holographic storage and retrieval of digital data, Science, 1994, 16: 605–607.Google Scholar
  6. 6.
    Psaltis, D., Mok, F., Holographic memories, Science America, 1995, 273: 70–76.Google Scholar
  7. 7.
    Ashley, J., Bernal, M. P., Burr, G. W. et al., Holographic data storage, IBM J. Res. and Dev., 2000, 44(3): 341–368.Google Scholar
  8. 8.
    Kincade, K., Holographic data storage prepares for the real world, Laser Focus World, 2003, 39(10): 68–73.Google Scholar
  9. 9.
    Yang, Y. P., Adibi, A., Psaltis, D. et al., Comparison of transmission and the 90-degree holographic recording geometry, Appl. Opt., 2003, 42(17): 3418–3427.CrossRefGoogle Scholar
  10. 10.
    Leith, E. N., Kozma, A., Upatnieks, J. et al., Holographic data storage in three-dimensional media, Appl. Opt., 1966, 5(8): 1303–1311.CrossRefGoogle Scholar
  11. 11.
    Curtis, K., Pu, A., Psaltis, D. et al., Method for holographic storage using peristrophic multiplexing, Opt. Lett., 1994, 19(13): 993–994.CrossRefGoogle Scholar
  12. 12.
    Rakuljic, G. A., Levya, V., Yariv, A., Optical data storage by using orthogonal wavelength-multiplexed volume holograms, Opt. Lett., 1992, 17(20): 1471–1473.CrossRefGoogle Scholar
  13. 13.
    Denz, C., Pauliat, G., Roosen, G., Volume hologram multiplexing using a deterministic phase encoding method, Opt. Comm., 1991, 85: 171–176.CrossRefGoogle Scholar
  14. 14.
    Psaltis, D., Levene, M., Pu, A. et al., Holographic storage using shift multiplexing, Opt. Lett., 1995, 7(20): 782–784.CrossRefGoogle Scholar
  15. 15.
    Tao, S. Q., Song, Z. H., Selviah, D. R. et al., Spatioangular multiplexing scheme for dense holographic storage, Appl. Opt., 1996, 35(14): 2380–2388.CrossRefGoogle Scholar
  16. 16.
    Markov, V., Millerd, J., Trolinger, J. et al., Multilayer volume holographic optical memory, Opt. Lett., 1999, 24(4): 265–267.CrossRefGoogle Scholar
  17. 17.
    Song, X. Y., He, Q. S., Wu, M. X. et al., A study on the cross-talk caused by DPL in crystal holographic data storage, J. of Optoelectronics·Laser (in Chinese), 2000, 11(3): 258–261.Google Scholar
  18. 18.
    Wang, J. N., He, S. R., He, Q. S. et al., Insensitivity of speckle multiplexing to multi-longitudinal modes of laser in volume holographic storage, Chin. Phy. Lett., 2003, 20(7): 1047–1050.CrossRefGoogle Scholar
  19. 19.
    He, Q. S., Wang, J. N., Zhang, P. K. et al., Dynamic speckle multiplexing scheme in volume holographic data storage and its realization, Opt. Exp., 2003, 11(4): 366–370.CrossRefGoogle Scholar
  20. 20.
    Vadde, V., Vijaya Kumar, V. V. K., Channel modeling & estimation for intrapage equalization in pixel-matched volume holographic data storage, Appl. Opt., 1999, 38: 4374–4368.CrossRefGoogle Scholar
  21. 21.
    Huang, X. B., He, Q. S., Shang, W. X. et al., Study of intra-page crosstalk suppression in volume holographic storage, Chin. J. of Lasers (in Chinese), 2003, 30: 79–80.Google Scholar
  22. 22.
    Burr, B. W., Ashley, J., Coufal, H. J. et al., Modulation coding for pixel-matched holographic data storage, Opt. Lett., 1997, 22(9): 639–641.CrossRefGoogle Scholar
  23. 23.
    Gu, C., Fu, H., Lien, J. R., Correlation patterns and cross-talk noise in volume holographic optical correlators, J. Opt. Soc. of Am. A, 1995, 12(5): 861–868.CrossRefGoogle Scholar
  24. 24.
    Feng, W. Y., Yan, Y. B., Jin, G. F. et al., Volume holographic wavelet correlation processor, Opt. Eng., 2000, 39(9): 2444–2450.CrossRefGoogle Scholar
  25. 25.
    Ouyang, C., Cao, L. C., He, Q. S. et al., Sidelobe suppression in volume holographic optical correlators by use of speckle modulation, Opt. Lett., 2003, 28(20): 1972–1974.CrossRefGoogle Scholar
  26. 26.
    Su, W. C., Chen, Y. W., Ouyang, Y. et al., Optical identification using a random phase mask, Opt. Comm., 2003, 219: 117–123.CrossRefGoogle Scholar

Copyright information

© Science in China Press 2004

Authors and Affiliations

  • Liangcai Cao
    • 1
  • Qingsheng He
    • 1
  • Haoyun Wei
    • 1
  • Guodong Liu
    • 1
  • Chuan Ouyang
    • 1
  • Jian Zhao
    • 1
  • Minxian Wu
    • 1
  • Guofan Jin
    • 1
  1. 1.State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision InstrumentsTsinghua UniversityBeijingChina

Personalised recommendations