Skip to main content
Log in

Bispecific antibody and its clinical applications in cancer

  • Review
  • Published:
Chinese Science Bulletin

Abstract

Bispecific antibody (BsAb) usually consists of two different antigen-binding arms, by which it is capable of simultaneously binding to target cells and effector cells, and can directly mediate the killing of target cells by retargeting and activating effector cells. The development of BsAb research goes through three main stages: chemical crosslinking of murine-derived monoclonal antibody, hybrid hybridomas and engineered BsAb. Among them, engineered BsAb has more formats than the other two, such as diabody, ScdHLX, ScZip, ScCH3, ScFab and BsIgG, etc. Compared with former murine-derived BsAbs, engineered BsAb has lower immunogenicity and stronger penetrating capacity, and currently, some of them appear suitable for clinical application in yields and qualities. Up to now, several phase I and phase II clinical studies of BsAb, for instance, some (Fab’)2 and Diabodies, have been performed. Among those BsAbs, anti-CD3/anti-tumor BsAbs is most common, they not only can activate T cell and induce CD3AK cytotoxic activity inin vitro experiment, and inhibit the growth of tumor on tumor-bearing mouse by retargeting T cells to lyse tumor cells, but also offer great promise in the therapy of some malignancies in clinic, especially of some advanced cancers as well as elimination of minimal residual tumors, indicated by increasing the tumor/blood ratio of antibody in patients and improving the natural killer cell (NK) anti-tumor activity in tumor sites, and also presenting of an increase level in TNF-α, INF-γ, IL-6, IL-8, IL-10 and soluble CD25, etc. The responses are also shown via improving the quality of life and prolonging the survival of partial patients. The “Knobs into Holes” technology is a new strategy emerging during research on engineered BsAb, it is likely to be useful for heterodimerization and can improve the quantity, purity and stability of BsAb, it is also anticipated to increase the clinical potential of BsAb in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carter, P., Ridgway, J., Zhu, Z. P., Toward the production of bispecific antibody fragments for clinical applications, J. Hematother, 1995, 4: 463.

    Google Scholar 

  2. Zhu, Z. P., Zapata, G., Shalaby, R. et al., High level secretion of a humanized bispecific diabody fromEscherichia coli, Bio/ technology, 1996, 14: 192.

    Google Scholar 

  3. Van de Winkel, G. C., Bast, B. E., Clinical perspectives of bispecific antibodies in cancer, Cancer Immunol. Immunother., 1997, 45: 121.

    Article  Google Scholar 

  4. Brennan, M., Davison, P. F., Paulus, H., Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G’ fragments, Science, 1985, 229: 81.

    Article  Google Scholar 

  5. Shalaby, M. R., Shepard, H. M., Presta, L. et al., Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene, J. Exp. Med., 1992, 175: 217.

    Article  Google Scholar 

  6. Carter, P., Kelley, R. F., Rodrigues, M. L. et al., High levelEscherichia coli expression and production of a bivalent humanized antibody fragment, Bio/Technology, 1992, 10: 163.

    Article  Google Scholar 

  7. Holliger, P., Prospero, T., Winter, G., “Diabodies”: Small bivalent antibody fragment, Proc. Natl. Acid. Sci. USA, 1993, 90: 6444.

    Article  Google Scholar 

  8. Holliger, P., Winter, G., “Diabodies”: Small bivalent antibody fragment, Cancer Immunol. Immunother., 1997, 45: 128.

    Article  Google Scholar 

  9. Fitzgerald, K., Holliger, P., Winter, G., Improved tumor targeting by disulphide stablized diabodies expressed in pichia pastoris, Protein Eng, 1997, 10(10): 1221.

    Article  Google Scholar 

  10. Pack, P., Pluckthun, A., Miniantibodied: Use of amphipathic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity inEscherichia coli., Biochemistry, 1992, 31: 1579.

    Article  Google Scholar 

  11. Kostelny, S. A., Cole, M. S., Jso, J. Y., Formation of a bispecific antibody by the use of leucine zippers, J. Immunol., 1992, 148: 1547.

    Google Scholar 

  12. Hu, S. Z., Shively, L., Raubitschek, A. et al., Minibody: A novel engineered anti-carcinoembryonic antigen antibody fragment (single-chain Fv-CH3) which exhibits rapid high-level targeting of xenografts, Cancer Res., 1996, 56: 3055.

    Google Scholar 

  13. Muller, K. M., Arndt, K. M., Strittmatter, W. et al., The first constant domain (CH1 and CL) of an antibody used as herterodimerization domain for bispecific miniantibodies, FEBS Letters, 1998, 422: 259.

    Article  Google Scholar 

  14. Merchant, A. M., Zhu, Z. P., Yuan, J. Q. et al., An efficient route to human bispecific IgG, Nature, Biotechnology, 1998, 16: 677.

    Article  Google Scholar 

  15. Ridgway, J. B., Presta, L. G., Carter, P., “Knobs into holes” engineered of antibody CH3 somains for heavy chain heterodimerization, Protein Eng., 1996, 9: 617.

    Article  Google Scholar 

  16. Canevari, S., Mezzanzanica, D., Menard, S. et al., Possible targets on carcinoma for bMAb retargeting of lymphocyte of drug cytotoxicity, Int. J. Cancer, 1992, supplement 7: 42.

    Google Scholar 

  17. Lu, D., Kotanides, H., Jimenez, X. et al., Acquired antagonistic activity of a bispecific diabody directed against two different epitopes on vascular endothelial growth factor receptor 2, J. Immunol. Methods, 1999, 230: 159.

    Article  Google Scholar 

  18. Rodrigues, M. L., Shalaby, M. R., Werther, W. et al., Engineered a humanized bispecific F(ab’)2 fragment for improved binding to T cells, Int. J. Cancer, 1992, supplement 7: 45.

    Google Scholar 

  19. Manzke, O., Titzer, S., Tesch, H. et al., CD3xCD19 bispecific antibodies and CD28 costimulation for locoregional treatment of tibodies and CD28 costimulation for locoregional treatment of low-malignancy non-Hodgkin’s lymphoma, Cance Immunol. Immunother, 1997, 45: 198.

    Article  Google Scholar 

  20. Kipriyanov, S. M., Moldenhauer, G., Strauss, G. et al., Bispecific CD3 × CD19 diabody for T cell-mediated lysis of malignant human B cell, Int. J. Cancer, 1998, 7: 763.

    Article  Google Scholar 

  21. Klein, S. C., Boer, L. H., De Weger, R. A. et al., Release of cytokines and soluble cell surface molecules by PBMC after activation with the bispecific antibody CD3 × CD19, Scand. J. Immunol., 1997, 46(5): 452.

    Article  Google Scholar 

  22. Pfosser, A., Brandl, M., Salih, H. et al., Role of target antigen in bispecific-antibody-mediated killing of human glioblastoma cells: apre-clinical study, Int. J. Cancer, 1999, 80(4): 612.

    Article  Google Scholar 

  23. Knuth, A., Bernhard, H., Jager, E. et al., Induction of tumor cell lysis by a bispecific antibody recognising epidermal growth factor receptor(EGFR) and CD3, Eur. J. Cancer, 1994, 30A(8): 1103.

    Article  Google Scholar 

  24. Miotti, S., Negri, D. R., Valota, O. et al., Level of anti-mouse-antibody response induced by bi-specific monoclonal antibody OC/TR in ovarian-carcinoma patients is associated with longer survival, Int. J. Cancer, 1999, 84(1): 62.

    Article  Google Scholar 

  25. Canevari, S., Mezzanzanica, D., Mazzoni, A. et al., Bispecific antibody targeted T cell therapy of ovarian cancer: clinical results and future directions, J. Hematother, 1995, 4(5): 423.

    Google Scholar 

  26. Luiten, R. M., Warnaar, S. O., Sanborn, D. et al., Chimeric bispecific OC/TR monoclonal antibody mediates lysis of tumor cells expressing the folate-binding protein(Mov18) and displays decreased immunogenicity in patients, J. Immunother, 1997, 20(6): 496.

    Article  Google Scholar 

  27. Renner, C., Bauer, S., Sahin, U. et al., Cure of disseminated Xenografted human Hodgkin’s tumors by bispecific monoclonal antibodies and human T cell: the role of human T-cell subsets in a preclinical model, Blood, 1996, 87(7): 2930.

    Google Scholar 

  28. Helfrich, W., Kroesen, B. J., Roovers, R. C. et al., Construction and characterization of a bispecific diabody for retargeting T cells to human carcinomas, Int. J. Cancer, 1998, 76(2): 232.

    Article  Google Scholar 

  29. Kroesen, B. J., Janssen, R. A., Buter, J. et al., Bispecific monoclonal antibodies for intravenous treatment of carcinoma patients: immunobiologic aspects, J. Hematother, 1995, 4(5): 409.

    Google Scholar 

  30. Kroesen, B. J., Nieken, J., Sleijfer, D. T. et al., Approaches to lung cancer treatment using the CD3 × EGP-2-directed bispecific monoclonal antibody BIS-1, Cancer Immunol. Immunother, 1997, 45(3–4): 203.

    Article  Google Scholar 

  31. Nitta, T., Sato, K., Yagita, H. et al., Preliminary trial of specific targeting therapy against malignant glioma, Lancet, 1990, 335: 368.

    Article  Google Scholar 

  32. Chapoval, A. L., Nelson, H., Thibault, C. et al., Anti-CD3 × anti-tumor F(ab’)2 bifunctional antibody activates and retargets tumor-infiltrating lymphocytes, J. Immunol., 1995, 155(3): 1296.

    Google Scholar 

  33. Chapoval, A. L., Nelson, H., Thibault, C. et al., Bifunctional antibody retargetingin vivo—activated T lymphocytes: simplifying clinical application, J. Hematother, 1995, 4(6): 571.

    Google Scholar 

  34. Kufer, P., Mack, M., Gruber, R. et al., Construction and biological activity of a recombinant bispecific single-chain antibody designed for therapy of minimal residual colorectal cancer, Cancer Immunol. Immunother, 1997, 45: 193.

    Article  Google Scholar 

  35. Riedle, S., Rosel, M., Zoller, M. et al.,In vivo activation and expansion of T cells by a bi-specific antibody abolishes metastasis formation of human melanoma cells in SCID mice, Int. J. Cancer, 1998, 75(6): 908.

    Article  Google Scholar 

  36. Penna, C., Dean, P. A., Nelson, H., Pulmonary metastases neutralization and tumor rejection byin vivo administration of beta glucan and bispecific antibody, Int. J. Cancer, 1996, 65(3): 377.

    Article  Google Scholar 

  37. Ohta, S., Tsukamoto, H., Watanabe, K. et al., Tumor-associated glycoantigen, sialyl lewis(a) as a target for bispecific antibodydirected adoptive tumor immunotherapy, Immunol. Lett., 1995, 44(2): 35.

    Article  Google Scholar 

  38. Honeychurch, J., Cruise, A., Tutt, A. L. et al., Bispecific Ab therapy of B-cell lymphoma: target cell specificity of antibody derivatives appears critical in deternining therapeutic outcome, Cancer Immunol. Immunother, 1997, 45: 171.

    Article  Google Scholar 

  39. Porter, L. E., Nelson, H., Gecim, I. E. et al., T cell activation and retargeting using staphylococcal enterotoxin B and bispecific antibody: An effectivein vivo anti-tumor strategy, Cancer Immunol. Immunother, 1997, 45: 180.

    Article  Google Scholar 

  40. De Gast, J. M., Van de Winkel, J. G., Bast, B. E., Clinical perspectives of bispecific antibodies in cancer., Cancer Immunother, 1997, 45: 121.

    Article  Google Scholar 

  41. Dahle, J. E., Weiner, G. J., T-cell activation induced by anti-CD3/ anti-B-cell lymphoma monoclonal antibody is enhanced by pretreatment of lymphoma cells with soluble CD40 ligand, Cancer Immunol. Immunother, 1997, 45: 174.

    Article  Google Scholar 

  42. Ethem, G. L. E., Chapoval, D. C., T cell activation and retargeting using staphylococcal enterotoxin B and bispecific antibody: An effectivein vivo antitumor strategy, Cancer Immunol. Immunother, 1997, 45: 180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanfu Xu.

About this article

Cite this article

Xu, Y., Yang, C. & Zhu, Z. Bispecific antibody and its clinical applications in cancer. Chin.Sci.Bull. 46, 353–358 (2001). https://doi.org/10.1007/BF03183262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03183262

Keywords

Navigation