Chinese Science Bulletin

, Volume 42, Issue 8, pp 624–627 | Cite as

An equality on Hochschild homology groups

  • Pu Zhang
  • Shaoxue Liu


finite-dimeasional algebra Hochsehild homology groups dimensious 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Happel, D., Hochschild cohomology of finite-dimensional algebras, inSpringer Lecture Notes 1 404, 1989, 108.Google Scholar
  2. 2.
    Carten, H., Eilenberg, S.,Homological Algebra, Princeton: Princeton Univ. Press, 1956.Google Scholar
  3. 3.
    Weibel, C. A., An introduction to homological algebra, inCumbridge Studies in Adwnced Math., Cambridge: Cambridge Univ. Pres, 1994.Google Scholar
  4. 4.
    Cibils, C., Rigidity of truncated quiver algebras,Adu. Math., 1990, 1: 18.CrossRefGoogle Scholar
  5. 5.
    Skowroński, A., Simply connected algebras and Hochschild cohomology, inCMS Confmence Proceed ings, 1992, 14: 431.Google Scholar
  6. 6.
    Liu, S. X., Zhang, P., On the Hochschild homology of some finite-dimensional algebras, inCMS Gnference Proceedings, 1992. 14: 353.Google Scholar
  7. 7.
    Liu, S. X., Zhang, P., Hochschild homology of truncated algebras,Bull. London Math. Soc., 1994, 26: 427.CrossRefGoogle Scholar
  8. 8.
    Zhanu, P., Hochschild cohomology groups of weak directed algebras,Chinese Science Bulletin, 1994, 39(22): 427.Google Scholar
  9. 9.
    Zhang, P., Hochschild cohomology groups of truncated algebras,Science in Chino, Ser. A, 1994, 24(11): 1121.Google Scholar
  10. 10.
    Ringel, C. M., Tame algebras and integral quadratic forms, inSpringer Lecture Notes, Vol. 1099, 1984.Google Scholar

Copyright information

© Science in China Press 1997

Authors and Affiliations

  • Pu Zhang
    • 1
  • Shaoxue Liu
    • 2
  1. 1.Department of MathematicsUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of MathematicsBeijing Normal UniversityBeijingChina

Personalised recommendations