Skip to main content
Log in

Flow visualization of relaminarization phenomena in curved pipes and the related measurements

  • Published:
Journal of Visualization Aims and scope Submit manuscript

Abstract

Flow visualization results for secondary flow phenomena at the exit of 90° and 180° bends and helically coiled pipes (1, 2 and 5 turns), (radius of curvatureR c=381 mm, inside pipe diameterd=37.5 mm, curvature ratiod/2R c=0.049) and in the downstream straight pipe (l/d=30) are presented to study the stabilizing (relaminarization) effect in curved pipes with fully developed entry turbulent air flow and the destabilizing (re-transition from laminar to turbulent flow) effect in the downstream straight region. The entry Reynolds numbers areRe=2200, 3200, 4300 and 5300).

The related measurement results using a hot-film anemometer are presented for developing profiles of the time-mean streamwise velocity distribution and the axial turbulence intensity field in the 180° return bend and in the downstream straight pipe for Reynolds numbersRe=3200, 4300, 6300 and 8200.

The time traces showing the output of the hot-film sensor are also presented for developing fluctuating velocity field in the 180° bend and in the downstream straight pipe for the same Reynolds number range. Some aspects of the relaminarization phenomena in curved pipes and the re-transition phenomena from laminar to turbulent flow in the downstream straight pipe are clarified by the present experimental investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

inside pipe radius,d/2

d :

inside pipe diameter, 2a

K :

Dean number, Re (a/R c)1/2

l :

downstream tube length

R c :

radius of curvature for bend or coil

Re :

Reynolds number,u md / v

u :

time-mean local axial velocity

u’:

fluctuating axial velocity component

u m :

mean velocity across the cross-section

x,y :

horizontal and vertical coordinates (Fig⨴3)

z :

axial coordinate in downstream pipe

v :

kinematic viscosity of air

Θ :

bend or coil turn angle

References

  • Ackeret, J., Aspects of Internal Flow, Fluid Mechanics of Internal Flow, (1967); Sovran, G. (Ed.), Elsevier Publishing Co., New York, 1–26.

    Google Scholar 

  • Akiyama, M., Murakoshi, T., Sugiyama, H., Cheng, K. C. and Nishiwaki, I., Numerical Solution of Convective Heat Transfer for Reverse Transition in the Bend Tube by a Low-Reynolds-Number Turbulent Model, JSME International Journal, Vol.31, No.2 (1988), 289–298.

    Google Scholar 

  • Anwer, M., So, R. M. C. and Lai, Y. G., Perturbation by and Recovery from Bend Curvature of a Fully Developed Turbulent Pipe Flow, Physics of Fluids A, Vol.1 (1989), 1387–1397.

    Article  Google Scholar 

  • Bankston, C. A., The Transition from Turbulent to Laminar Gas Flow in a Heated Pipe, ASME Journal of Heat Transfer, Vol.92, (1970), 569–579.

    Google Scholar 

  • Berger, S. A., Talbot, L. and Yao, L. S., Flow in Curved Pipes, Ann. Rev. Fluid Mech., Vol.15 (1983), 461–512.

    Article  Google Scholar 

  • Berger, S. A., Flow and Heat Transfer in Curved Pipes and Tubes, 29th AIAA Aerospace Sciences Meeting, (1991), AIAA 91-0030.

  • Chang, S. M., Humphrey, J. A. C. and Modavi, A., Turbulent Flow in a Strongly Curved U-Bend and Downstream Tangent of Square Cross-Sections, PCH Physico-Chemical Hydrodynamics, Vol.4 (1983), 243–269.

    Google Scholar 

  • Cheng, K. C. and Yuen, F. P., Flow Visualization Studies on Secondary Flow Patterns in Straight Tubes Downstream of a 180 deg Bend and in Isothermally Heated Horizontal Tubes, ASME Journal of Heat Transfer, Vol.109 (1987), 49–54.

    Article  Google Scholar 

  • Cheng, K. C., Takuma, M. and Kamiya, Y., Visualization of Developing Secondary Flow Patterns in the Hydrodynamic Entrance Region of a Curved Pipe, J. of Flow Visualization and Image Processing, Vol.2 (1995), 1–13.

    Google Scholar 

  • Humphrey, J. A. C. and Webster, D. R., Questions in Fluid Mechanics — Reverse Transition Phenomena in Helically Coiled Pipes, ASME Journal of Fluids Engineering, Vol.115 (1993), 191–192.

    Article  Google Scholar 

  • Ishigaki, H., Analogy Between Turbulent Flows in Curved Pipes and Orthogonally Rotating Pipes, J. Fluid Mech., Vol.307 (1996), 1–10.

    Article  MATH  Google Scholar 

  • Ito, H., Friction Factors for Turbulent Flow in Curved Pipes, ASME Journal of Basic Engineering, Vol.81 (1959), 123–134.

    Google Scholar 

  • Ito, H. and Miyakawa, T., Discharge Coefficients for 360 — Deg. Bend Flowmeters, Bulletin of the JSME, Vol.21 (1978), 1268–1276.

    Google Scholar 

  • Ito, H., Flow in Curved Pipes, JSME International Journal, Vol.30 (1987), 543–552.

    Google Scholar 

  • Kalb, C. E. and Seader, J. D., Entrance Region Heat Transfer in a Uniform Wall-Temperature Helical Coil with Transition from Turbulent to Laminar Flow, Int. J. Heat Mass Transfer, Vol.26 (1983), 23–32.

    Article  Google Scholar 

  • Lombardi, G., Sparrow, E. M. and Eckert, E. R. G., Experiments on Heat Transfer to Transpired Turbulent Pipe Flows, Int. J. Heat Mass Transfer, Vol.17 (1974), 429–437.

    Article  Google Scholar 

  • Nandakumar, K. and Masliyah, J. H., Swirling Flow and Heat Transfer in Coiled and Twisted Pipes, Advances in Transport Processes, (1986), John Wiley & Sons, 49–112.

  • Narasimha, R., The Three Archetypes of Relaminarization, Procs. 6th Canadian Congress of Applied Mechanics, Vancouver, (1977), 503–527.

  • Narasimha, R. and Sreenivasan, K. R., Relaminarization of Fluid Flows, Advances in Applied Mechanics, Vol.19 (1979), 221–309.

    Article  Google Scholar 

  • Ohadi, M. M. and Sparrow, E. M., Heat Transfer in a Straight Tube Situated Downstream of a Bend, Int. J. Heat Mass Transfer, Vol.32 (1987), 201–212.

    Article  Google Scholar 

  • Ohadi, M. M., Sparrow, E. M., Walavalkar, A. and Ansari, A. I., Pressure Drop Characteristics for Turbulent Flow in a Straight Circular Tube Situated Downstream of a Bend, Int. J. Heat Mass Transfer, Vol.33 (1990 a), 583–591.

    Article  Google Scholar 

  • Ohadi, M. M. and Sparrow, E. M., Effect of a 180 Degree Bend on Heat Transfer in a Downstream Positioned Straight Tube, Int. J. Heat Mass Transfer, Vol.33 (1990b), 1359–1362.

    Article  Google Scholar 

  • Patankar, S. V., Pratap, V. S. and Spalding, D. B., Prediction of Laminar Flow and Heat Transfer in Helically Coiled Pipes, J. Fluid Mech., Vol.62 (1974), 539–551.

    Article  MATH  Google Scholar 

  • Patankar, S. V., Pratap, V. S. and Spalding, D. B., Prediction of Turbulent Flow in Curved Pipes, J. Fluid Mech., Vol.67 (1975), 583–595.

    Article  MATH  Google Scholar 

  • Pennell, W. T., Eckert, E.R.G. and Sparrow, E. M., Laminarization of Turbulent Pipe Flow by Fluid Injection, J. Fluid Mech., Vol.52 (1972), 451–464.

    Article  Google Scholar 

  • Prandtl, L., The Mechanics of Viscous Fluids, W.F. Durand (ed.), Aerodynamic Theory, Vol.3 (1935), 155–162.

  • Rowe, M., Measurements and Computations of Flow in Pipe Bends, J. Fluid Mech., Vol.43 (1970), 771–783.

    Article  Google Scholar 

  • Sreenivasan, K. R., Laminarescent, Relaminarizing and Retransitional Flows, Acta Mechanica, Vol.44 (1982), 1–48.

    Article  MATH  Google Scholar 

  • Sreenivasan, K. R. and Strykowski, P.J., Stabilization Effects in Flow Through Helically Coiled Pipes, Experiments in Fluids, Vol.1 (1983), 31–36.

    Article  Google Scholar 

  • Sreenivasan, K. R., Some Studies of Non-Simple Pipe Flows, 8th Australasian Fluid Mechanics Conference, Procs., Vol.1 (1983), K 7.1–7.8.

    Google Scholar 

  • Taylor, G.I., The Criterion for Turbulence in Curved Pipes, Proc. R. Soc., London, Ser. A, Vol.124 (1929), 243–249.

    Article  Google Scholar 

  • Torii, S. and Yang, W. J., Laminarization of Turbulent Gas Flow Inside a Strongly Heated Tube, Int. J. Heat Mass Transfer, Vol.40 (1997), 3105–3117.

    Article  MATH  Google Scholar 

  • Trefethen, L., Fluid Flow in Radial Rotating Tubes, Actes, IX, Congrés International de Mécanique Appliquée, Université de Bruxelles, Vol.2 (1957), 341–350.

    Google Scholar 

  • Ward-Smith, A. J., Internal Fluid Flow, The Fluid Dynamics of Flow in Pipes and Ducts, (1980), Clarendon Press, Oxford.

    Google Scholar 

  • White, C. M., Streamline Flow Through Curved Pipes, Proc. Roy. Soc., London, Ser. A, Vol.123 (1929), 645–663.

    Article  Google Scholar 

  • Wiswanath, P. R., Narasimha, R. and Prabhu, A., Visualization of Relaminarizing Flows, J. Indian Inst. Sci., Vol.60 (1978), p.159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurokawa, M., Cheng, K.C. & Shi, L. Flow visualization of relaminarization phenomena in curved pipes and the related measurements. J Vis 1, 9–28 (1998). https://doi.org/10.1007/BF03182471

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03182471

Keywords

Navigation