Advertisement

Journal of Visualization

, Volume 4, Issue 1, pp 19–28 | Cite as

Visualization and diagnostics of thermal plasma flows

  • Boulos M. I. 
Article

Abstract

Flow visualization is a key tool for the study of thermal plasma flows. Because of their high temperature and associated self emission, standard and high speed photography is commonly used for flow and temperature field visualization. Tracer techniques through the injection of a seed powder in the plasma flow have also been often used for the study of flow structure. Shadowgraphs and Schlieren techniques have been used particularly when cold flow regions are present in the close proximity of the plasma discharge. They also provide key information about the flow structure in the fringes of the discharge. Laser strobe techniques are commonly used for the characterization of particle trajectories under plasma conditions. A brief review is presented of available plasma and particulate diagnostic techniques with detailed measurements reported for a radio frequency (r.f.) induction plasma discharge using enthalpy probe techniques.

Keywords

thermal plasma flows induction plasma d.c. plasma jet photographic techniques schlieren laser strobe enthalpy probe techniques 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boulos, M., The Inductively Coupled r.f. Plasma, J. Pure and Applied Chemistry, 57 (1985), 1321–1352.CrossRefGoogle Scholar
  2. Boulos, M., The Inductively Coupled Radio Frequency Plasma, J. High Temperature Materials Processing, 1 (1997), 17–39.Google Scholar
  3. Boulos, M., Fauchais, P. and Pfender, E. Diagnostic Techniques in Thermal Plasma Processing, DOE report, no. DOE/ER-0270, (1986), 1–2.Google Scholar
  4. Fauchais, P., Coudert, J. F. and Vardelle, M., In Plasma Diagnostics, (1989), 349–446, Academic Press, N.Y.Google Scholar
  5. Fauchais, P., Coudert, J. F., Vardelle, M., Vardelle, A. and Denoirjean, A., Diagnostics of Thermal Spraying Plasma Jets, J. Thermal Spray Technology, 1 (1992), 117–128.CrossRefGoogle Scholar
  6. Landers, K., Diagnostics and On-line Control of a Plasma Spray Process, High Temp. Materials Processes, 1 (1997), 315–326.Google Scholar
  7. Moreau, C., Towards a Better Control of Thermal Spray Process, Proceedings ITSC-98 (Nice France), (1998), 1681–1693.Google Scholar
  8. Mostaghimi, J. and Boulos, M., Two-dimensional Electromagnetic Field Effects in r.f. Inductively Coupled Plasmas, J. Plasma Chemistry Plasma Processing, 9 (1989), 23–42.Google Scholar
  9. Rahmane, M., Soucy, G. and Boulos, M. I., Analysis of Enthalpy Probe Technique for Thermal Plasma Diagnostics, Rev. Sci. Instrum., 66 (1995), 3424–3431.CrossRefGoogle Scholar
  10. Rahmane, M., Soucy, G. and Boulos, M. I., Diffusion Phenomena of a Cold Gas in Thermal Plasma Stream, Plasma Chem. Plasma Proces., 16 (1996), 169S-189S.CrossRefGoogle Scholar
  11. Rahmane, M., Soucy, G. and Boulos, M. I., Mass Transfer in Induction Plasma Reactors, Int. J. Heat Mass Transfer, 37 (1994), 2035–2046.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2001

Authors and Affiliations

  • Boulos M. I. 
    • 1
  1. 1.Plasma Technology Research Center (CRTP), Department of Chemical EngineeringUniversité de SherbrookeSherbrookeCanada

Personalised recommendations