, Volume 47, Issue 2, pp 85–92 | Cite as

Alnus acuminata in dual symbiosis withFrankia and two different ectomycorrhizal fungi (Alpova austroalnicola andAlpova diplophloeus) growing in soilless growth medium

  • Alejandra G. Becerra
  • Eugenia Menoyo
  • Irene Lett
  • Ching Y. Li


In this study we investigated the capacity of Andean alder (Alnus acuminate Kunth), inoculated withFrankia and two ectomycorrhizal fungi (Alpova austroalnicola Dominguez andAlpova diplophloeus ([Zeller and Dodge] Trappe and Smith), for nodulation and growth in pots of a soilless medium that contained vermiculite or a mixture of ground basalt rock and vermiculite. The seedlings were inoculated withFrankia suspensions prepared from root nodules ofA. Acuminate, followed by inoculation with spores of either one of the twoAlpova species. The seedlings were grown in a greenhouse for 12 months. The seedlings grown in the vermiculite-based growth medium containing large (1-3 mm) basalt particles andAlpova austroalnicola or medium-sized (0.5-1 mm) basalt particles andA. Diplophloeus had the heaviest shoot and root nodule dry weights and abundant ectomycorrhizal colonization. Ectomycorrhizas formed byA. Acuminate withAlpova austroalnicola is described here for the first time. Growth ofAlnus acuminate inoculated with ectomycorrhizal fungi andFrankia in the soilless primary minerals indicates that Andean alder can alter resource supply by tapping an otherwise unavailable nutrient source.


Alpova, Alnus acuminate ectomycorrhiza Frankia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aceñolaza, P.G. 1995. Estructura y Dinamica de bosques de aliso (Alnus acuminate HBK subsp.acuminata) de la Provincia de Tucumán, PhD Thesis. Fac. de Ciencias Naturales e Instituto Miguel Lillo, National University of Tucuman, Argentina. 286 pp.Google Scholar
  2. Agerer, R. 1991. Characterization of ectomycorrhiza. In:Techniques for the Study of Mycorrhiza. Methods in Microbiology. Norris, J.R., Read, O.J., and Varma, A.K., eds. Academic, London, vol. 23, pp. 25–73.CrossRefGoogle Scholar
  3. Agerer, R. 1999. Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In:Mycorrhiza. Structure. Function. Molecular Biology and Biotechnology. Varma, A.K. and Hock, B., eds. 2nd edition. Springer, Berlin, Heidelberg, New York, pp. 633–682.Google Scholar
  4. Agerer, R. and Rambold, G. 1998. DEE MY, a DELTA-based information system for characterization and Determination of Ectomycorrhizae Version 1.1. Section Mycology, Institute for Systematic Botany, University of Munich.Google Scholar
  5. Balogh-Brunstad, Z., Keller, CX., Dickinson, J.T., Stevens, F., Li, C.Y., and Bormann, B.T. 2008. Biotite weathering and nutrient uptake by ectomycorrhizal fungus,Suillustomentosus, in liquid culture experiments.Geochimica Cosmochimica Acta 72: 2601–2618.CrossRefGoogle Scholar
  6. Baiza Viloria, M. 1959. Estudio sobre el aliso y su regeneración natural en el Valle del Alto Chama. Facultad de Ciencias Forestales, University of Los Andes, Venezuela.Google Scholar
  7. Becerra, A., Daniele, G., Domínguez, L., Nouhra, E., and Horton, T. 2002. Ectomycorrhizae betweenAlnus acuminate H.B.K. andNaucoria escharoides (Fr.:Fr.) Kummer from Argentina.Mycorrhiza 12: 61–66.PubMedGoogle Scholar
  8. Becerra, A., Nouhra, E., Daniele, G., Dominguez, L., and McKay, D. 2005a. Ectomycorrhizas ofCortinarius helodes andGyrodon monticola withAlnus acuminate from Argentina.Mycorrhiza 15: 7–15.CrossRefPubMedGoogle Scholar
  9. Becerra, A., Pritsch, K., Arrigo, N., Palma, M., and Bartoloni, N. 2005b. Ectomycorrhizal colonization ofAlnus acuminate Kunth in northwestern Argentina in relation to season and soil parameters.Annals of Forest Science 62: 325–332.CrossRefGoogle Scholar
  10. Becerra, A., Beenken, L., Pritsch, K., Daniele, G., Schloter, M., and Agerer, R. 2005c. Anatomical and molecular characterization ofLactarius aff. omphaliformis, Russula alnijorullensis andCortinarius tucumanensis ectomycorrhizae onAlnus acuminata.Mycologia 97: 1047–1057.CrossRefPubMedGoogle Scholar
  11. Bormann, B.T., Wang, D., Bormann. F.H., Benoit, G., April, R., and Snyder. M.C. 1998. Rapid, plant-induced weathering in an aggrading experimental ecosystem.Biogeochemistry 43: 129155.CrossRefGoogle Scholar
  12. Brunner. I.L., Brunner, F.. and Miller, O.K. 1990. Ectomycorrhizal synthesis with AlaskanAlnus tenuifolia.Canadian Journal of Botany 68: 761–767.CrossRefGoogle Scholar
  13. Cervantes, E. and Rodríguez Barrueco, C. 1992. Relationships between the mycorrhizal and actinorhizal symbioses in nonlegumes. In:Methods in Microbiology. Norris, J.R., Read, D.J., and Varma, AX., eds. Academic Press, London, vol. 24, pp. 417–432.Google Scholar
  14. De Roman, M., Claveria, V., and De Miguel, A.M. 2005. A revision of the descriptions of ectomycorrhizas published since 1961.Mycological Research 109: 1063–1104.CrossRefPubMedGoogle Scholar
  15. Godbout, C. and Fortin, LA. 1983. Morphological features of synthesized ectomycorrhizae ofAlnus crispa andAlnus rugosa.New Phytologist 94: 249–262.CrossRefGoogle Scholar
  16. Grau, A. 1985. La expansión del aliso del cerro (Alnus acuminate H.B.K. subsp.acuminata) en el noroeste de Argentina.Lilloa 36: 237–247.Google Scholar
  17. Halling, R.E. and Mueller, G.M. 2004.Common Mushrooms of the Talamanca Mountains, Costa Rica. The New York Botanical Garden Press.Google Scholar
  18. Hinsinger, P., Jaillard, B., and Dufey, J.E. 1992. Rapid weathering of a trioctahedal mica by roots of ryegrass.Soil Science Society of America Journal 56: 977–982.CrossRefGoogle Scholar
  19. Infostat. 2001. Programa de análisis estadísticos. Cátedra de Estadistica. Facultad de Ciencias Agropecuarias, National University of Cordoba.Google Scholar
  20. Israel, D.W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation.Plant Physiology 84: 835–840.CrossRefPubMedGoogle Scholar
  21. Lapeyrie, F., Ranger, L, and Vairelles, D. 1991. Phosphatesolubilizing activity of ectomycorrhizal fungiin vitro.Canadian Journal of Botany 69: 342–346.CrossRefGoogle Scholar
  22. Leyval, C., Laheurte, F., Belgy, G., and Berthelin, J. 1990. Weathering of micas in the rhizospheres of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation.Symbiosis 9: 105–109.Google Scholar
  23. Li, C.Y. and Strzelczyk, E. 2000. Belowground microbial Processes underpin forest productivity.Phyton 40: 129–134.Google Scholar
  24. Li, C.Y. and Bormann, B. 2003. Weathering of basalt rock by red alder (Alnus rubra Bong.) inoculated withFrankia and ectomycorrhizal fungusAlpova diplophloeus. 103rd General Meeting of the American Society for Microbiology, May 1822, Washington, DC. p. 426.Google Scholar
  25. Massicotte, H.B., Peterson, R.L., Ackerley, C.A., and Piche, Y. 1986. Structure and ontogeny ofAlnus crispa+Alpova Diplophloeus ectomycorrhizae.Canadian Journal of Botany 64: 177–192.Google Scholar
  26. Miller, S.L., Koo, C.D., and Molina, R. 1991. Characterization of red alder ectomycorrhizae: a preface to monitoring belowground ecological responses.Canadian Journal of Botany 69: 516–531.CrossRefGoogle Scholar
  27. Molina, R. 1979. Pure culture synthesis and host specificity of red alder ectomycorrhizae.Canadian Journal of Botany 57: 1223–1228.CrossRefGoogle Scholar
  28. Moser, M. 2001. Some aspects ofCortinarius associated withAlnus.Journees Européennes du Cortinaire 3: 47–101.Google Scholar
  29. National Academy of Sciences. 1984. Especies para leña; árboles y arbustos para la producción de energyía. CATIE, Turrialba, Costa Rica, pp. 343.Google Scholar
  30. Nouhra, E., Dominguez, L., Becerra, A., and Mangeaud, A. 2003. Colonización micorricica y actinorrícica en plantines deAlnus Acuminata (Betulaceae) cultivados en suelos nativos deAlnus rubra.Boletín de la Sociedad Argentina de Botánica 38: 199–206.Google Scholar
  31. Nouhra, E., Domínguez, L., Becerra, A., and Trappe, J. 2005. Morphology, molecular analysis and some ecological aspects of the hypogeous fungi,Alpova austroalnicola sp nov.Mycologia 97: 598–604.CrossRefPubMedGoogle Scholar
  32. Paris, F., Bonnaud, P., Ranger, L, and Lapeyrie, F. 1995.In vitro weathering of phlogopite by ectomycorrhizal fungi. I. Effect of K+ and Mg2+ deficiency on phyllosilicate evolution.Plant and Soil 177: 191–201.CrossRefGoogle Scholar
  33. Paris, F., Botton, B., and Lapeyrie, F. 1996.In vitro weathering of phlogopite by ectomycorrhizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+ Plant and Soil 179: 141–150.CrossRefGoogle Scholar
  34. Perry, D.A., Molina, R., and Amaranthus, M.P. 1987. Mycorrhizae, mycorrhizospheres, and reforestation: current knowledge and research needs.Canadian Journal of Forest Research 17: 929–940.CrossRefGoogle Scholar
  35. Pritsch, K. 1996. Untersuchungen zur Diversität und Ökologie von Mykorrhizen der Schwarzerle [Alnus glutinosa (L.) Gaertn.]. PhD Thesis, University of Tübingen, Germany.Google Scholar
  36. Pritsch, K., Boyle, H., Munch, J.C., and Buscot, F. 1997. Characterization and identification of black alder ectomycorrhizas by PCRJRFLP analyses of the rDNA internal transcribed spacer (ITS).New Phytologist 137: 357–369.CrossRefGoogle Scholar
  37. Raithelhuber, J. 1988.Flora Mycologica Argentina. Hongos II. Mycosur, ed. pp. 1-287.Google Scholar
  38. Rojas, H., Macia, F., and Lastra, lA 1978. Monografia delAlnus Jorullensis H.B.K.Colombia Forestal 1: 5–22.Google Scholar
  39. Rojas, N.S., Li, C.Y., Perry, D.A., and Ganio, L.M. 2001.Frankia and nodulation of red alder and snowbrush grown on soils from Douglas-fir forests in the HJ. Andrews experimental forest of Oregon.Applied Soil Ecology 17: 141–149.CrossRefGoogle Scholar
  40. Rojas, N.S., Li, C.Y., Perry, D.A., and Ganio, L.M. 2002. Interactions among soil biology, nutrition, and performance of actinorhizal plant species in the H.J. Andrews experimental forest of Oregon.Applied Soil Ecology 19: 13–26.CrossRefGoogle Scholar
  41. Roy, S., Khasa, D.P., and Greer, C.W. 2007. Combining alders, frankiae and mycorrhizae for the revegetation and remediation of contaminated ecosystems.Canadian Journal of Botany 85: 237–251.CrossRefGoogle Scholar
  42. Schenk, N.C. 1982.Methods and Principles of Mycorrhizal Research. The American Phytopathological Society, St. Paul.Google Scholar
  43. Singer, R. and Morello, J.H. 1961. Ectotrophic forest tree mycorrhizae and forest communities.Ecology 41: 549–551.CrossRefGoogle Scholar
  44. Smith, S.E. and Read, OJ. 1997.Mycorrhizal Symbiosis, 2nd Edition, Academic Press, London.Google Scholar
  45. Wallander, H., Hagerberg, D., and Aberg, G. 2006. Uptake of87Sr from microcline and biotite by ectomycorrhizal fungi in a Norway spruce forest.Soil Biology and Biochemistry 38: 2487–2490.CrossRefGoogle Scholar
  46. Watteau, F. and Berthelin, J. 1990. Iron solubilization by mycorrhizal fungi producing siderophores.Symbiosis 9: 59–67.Google Scholar
  47. Wiedmer, E. and Senn-Irlet, B. 2001.Alpova diplophloeus (Zeller & Dodge) Trappe & A. H. Smith+Alnus viridis (Chaix) DC.Descriptions of Ectomycorrhizae 5: 1–8.Google Scholar
  48. Yamanaka, T., Li, C.Y., Bormann, B.T., and Okabe, H. 2003. Tripartite associations in an alder: effects ofFrankia andAlpova diplophloeus on the growth, nitrogen fixation and mineral acquisition ofAlnus tenuifolia.Plant and Soil 254: 179–186.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • Alejandra G. Becerra
    • 1
  • Eugenia Menoyo
    • 2
  • Irene Lett
    • 3
  • Ching Y. Li
    • 4
  1. 1.Institute Multidisciplinario de Biología Vegetal (CONICET), Cátedra de Diversidad Vegetal I, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaRepública Argentina
  2. 2.Cátedra de Diversidad Vegetal I, Facultad de Química, Bioquímica y FarmaciaUniversidad Nacional de San LuisRepública Argentina
  3. 3.Cátedra de Ecología General, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaRepública Argentina
  4. 4.Forestry Sciences LaboratoryCorvallisUSA

Personalised recommendations