Journal of Visualization

, Volume 3, Issue 3, pp 275–285 | Cite as

Visualization of multiple scalar and velocity fields in a lifted jet flame

  • Watson K. A. 
  • Lyons K. M. 
  • Donbar J. M. 
  • Carter C. D. 


The stabilization of lifted jet diffusion flames has long been a topic of interest to combustion researchers. The flame and flow morphology, the role of partial premixing, and the effects of large scale structures on the flame can be visualized through advanced optical imaging techniques. Many of the current explanations for flame stabilization can benefit from the flow and flame information provided by laser diagnostics. Additionally, the images acquired from laser diagnostic experiments reveal features invisible to the eye and line-of-sight techniques, thereby allowing a deeper insight into flame stabilization. This paper reports visualizations of flame and flow structures from Particle Image Velocimetry (PIV), Planar Laser-Induced Fluorescence (PLIF) and Rayleigh scattering. The techniques are surveyed and the success of visualization techniques in clarifying and furthering the understanding of lifted-jet flame stabilization is discussed.


laser diagnostics combustion jet diffusion flame flame stabilization particle image velocimetry (PIV) laser-induced fluorescence (LIF) Rayleigh scattering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, R. J., Particle-imaging Techniques for Experimental Fluid Mechanics, Ann. Rev. Fluid Mech., 23 (1991), 261–304.CrossRefGoogle Scholar
  2. Carter, C. D., Donbar, J. M. and Driscoll, J. F., Simultaneous CH Planar Laser-Induced Fluorescence and Particle Imaging Velocimetry in Turbulent Nonpremixed Flames, Applied Physics B, 66 (1998), 129–132.CrossRefGoogle Scholar
  3. Chen, T. H. and Goss, L. P., Statistical OH-Zone Structures of Turbulent Jet Flames from Liftoff to Near-Blowout, Combustion Science and Technology, 79 (1991), 311–324.CrossRefGoogle Scholar
  4. Eckbreth, A., Laser Diagnostics for Combustion Temperature and Species, (1996), 2nd Edition, Gordon and Breach, The Netherlands.Google Scholar
  5. Everest, D. A., Feikema, D. A. and Driscoll, J. F., Images of the Strained Flammable Layer Used to Study the Liftoff of Turbulent Jet Flames., Twenty-Sixth Symposium (International) on Combustion (1996), 129–136, The Combustion Institute, Pittsburgh.Google Scholar
  6. Goss, L. P., Post, M. E., Trump, D. D. and Sarka, B., Two-Color Particle-Imaging Velocimetry, Journal of Laser Applications, (Winter 1991), 36–42.Google Scholar
  7. Hasselbrink, E. F., Mungal, M. G. and Hanson, R. K., Simultaneous Planar Velocity Measurements and OH Imaging in a Transverse Jet Flame, Journal of Visualization, 1-1 (1998), 65–77.CrossRefGoogle Scholar
  8. Laurenco, L. M., Krothapalli, A. and Smith, C. A., Particle Image Velocimetry, in Advances in Fluid Mechanics Measurements, Lecture Notes in Engineering, (1989), Springer-Verlag, Heidelberg.Google Scholar
  9. Muñiz, L. and Mungal, M. G., Instantaneous Flame-Stabilization Velocities in Lifted-Jet Diffusion Flames, Combustion and Flame, 111 (1997), 16–31.CrossRefGoogle Scholar
  10. Peters, N. and Williams, F. A., Liftoff Characteristics of Turbulent Jet Diffusion Flames, AIAA Journal, 21 (1983), 423–429.MATHCrossRefGoogle Scholar
  11. Pitts, W. M., Assessment of Theories for the Behavior and Blowout of Lifted Turbulent Jet Diffusion Flames, Twenty-Second Symposium (International) on Combustion (1988), 809–816, The Combustion Institute, Pittsburgh.Google Scholar
  12. Pitts, W. M., Importance of Isothermal Mixing Processes to the Understanding of Lift-Off and Blowout of Turbulent Jet Diffusion Flames, Combustion and Flame, 76 (1989), 197–212.CrossRefGoogle Scholar
  13. Schefer, R. W., Three-Dimensional Structure of Lifted, Turbulent-Jet Flames, Combustion Science and Technology, 125 (1997), 371–394.CrossRefGoogle Scholar
  14. Schefer, R. W. and Goix, P. J., Mechanism of Flame Stabilization in Turbulent, Lifted-Jet Flames, Combustion and Flame, 112 (1998), 559–574.CrossRefGoogle Scholar
  15. Takahashi, F., Schmoll, W. J., Trump, D. D. and Goss, L. P., Vortex-Flame Interactions and Extinction in Turbulent Jet Diffusion Flames, Twenty-Sixth Symposium (International) on Combustion (1996), 145–152, The Combustion Institute, Pittsburgh.Google Scholar
  16. Taylor, A. M. K. P., Ed., Instrumentation for Flows with Combustion, (1993), Academic Press, San Diego.Google Scholar
  17. Vanquickenborne, L. and Van Tiggelen, A., The Stabilization Mechanism of Lifted Diffusion Flames, Combustion and Flame, 10 (1966), 59–69.CrossRefGoogle Scholar
  18. Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D., Scalar and Velocity Field Measurements in a Lifted CH4-Air Diffusion Flame, Combustion and Flame, 117 (1999a), 257–271.CrossRefGoogle Scholar
  19. Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D., Observations on the Leading Edge in Lifted Flame Stabilization, Combustion and Flame, 119 (1999b), 199–202.CrossRefGoogle Scholar
  20. Watson, K. A., Lyons, K. M., Donbar, J. M. and Carter, C. D., Simultaneous Rayleigh Imaging and CH-PLIF Measurements in a Lifted Jet Diffusion Flame, Combustion and Flame, (to appear).Google Scholar
  21. Wichman, I. S., Lakkaraju, N. and Ramadan, B., The Structure of Quenched Triple Flames Near Cold Walls in Convective Flows, Combustion Science and Technology, 127 (1997), 141–165.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2000

Authors and Affiliations

  • Watson K. A. 
    • 1
  • Lyons K. M. 
    • 1
  • Donbar J. M. 
    • 2
  • Carter C. D. 
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA
  2. 2.Air Force Research LaboratoryWright-Patterson Air Force BaseUSA
  3. 3.Innovative Scientific Solutions, Inc.DaytonUSA

Personalised recommendations