Advertisement

Journal of Visualization

, Volume 9, Issue 2, pp 209–217 | Cite as

Velocity measurement of flow in the microchannel with barriers using Micro-PIV

  • Wang R. J. 
  • Lin J. Z. 
  • Xie H. B. 
Article

Abstract

An important application field of microfluidics is in microchemistry. Reactions of premixed reactants call for efficient designs of micromixers. This paper presents the investigations of a relatively little known micromixer embedded with barriers. The micro-resolution particle image velocimetry is used to measure the flow in the micromixer. The obtained results are in good agreement with numerical simulation. The results show that the barriers embedded in the microchannel lead to a large variation of velocity gradient, and make the fluid stretch and fold in the micromixer, which results in a substantial enhancement of the mixing efficiency.

Keywords

Microchannel Micro-PIV Velocity distribution Measurement Computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim, D. S., Lee, S. W., Kwon, T. H. and Lee, S. S., A barrier embedded chaotic micromixer, J. of Micromechanics and Microengineering, 14 (2004(a)), 798–805.CrossRefGoogle Scholar
  2. Kim, M. J. and Kihm, K. D., Microscopic PIV measurements for electro-osmotic flows in PDMS microchannels, Journal of Visualization, 7 (2004(b)), 111.CrossRefGoogle Scholar
  3. Kim, H. J., Measurements of temperature and flow fields with sub-millimeter spatial resolution using two-color laser induced fluorescence (LIF) and micro-particle image velocimetry (PIV), J. of Mechanical science and Technology, 19 (2005), 716–727.CrossRefGoogle Scholar
  4. Meinhart, C. D., Wereley, S. T. and Gray, M. H. B., Volume illumination for two-dimensional particle image velocimetry, Meas. Sci. Technol., 1 (2000), 809.CrossRefGoogle Scholar
  5. Santiago, J. G., Wereley, S. T. and Meinhart, C. D., A particle image velocimetry system for microfluidics, Experiments in Fluids, 25 (1998), 316.CrossRefGoogle Scholar
  6. Sato, Y., Inaba, S., Hishida, K. and Maeda, M., Spatially averaged time-resolved particle-tracking velocimetry in microspace considering Brownian motion of submicron fluorescent particles, Exp. Fluids, 35 (2003), 167.CrossRefGoogle Scholar
  7. Shinohara, K., Sugii, Y., Aota, A., Hibara, A., Tokeshi, M., Kitamori, T. and Okamoto, K., High-speed micro-PIV measurements of transient flow in microfluidic devices, Measurement science and Technology, 15 (2004), 1965–1970.CrossRefGoogle Scholar
  8. Stone, S. W., Meinhart, C. D. and Wereley, S. T., A microfluidic-based nanoscope, Experiments in Fluids, 33 (2002), 613.CrossRefGoogle Scholar
  9. Stroock, A. D., Dertinger, S. K. W. and Ajdari, A., Chaotic mixer for microchannels, Science, 295 (2002), 647.CrossRefGoogle Scholar
  10. Sugii, Y. and Okamoto, K., Quantitative visualization of micro-tube flow using micro-PIV Journal of Visualization, 7-1 (2004), 9–16.CrossRefGoogle Scholar
  11. Sugii, Y., Okuda, R., Okamoto, K. and Madarame, H., Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique, Measurement science and Technology, 16 (2005), 1126–1130.CrossRefGoogle Scholar
  12. Tesar, V., “Fluid Plug” Microfluidic Valve for Low Reynolds Number Fluid Flow Selector Units, Journal of Visualization, 6-1 (2003), 77–86.CrossRefGoogle Scholar
  13. Tian, J. D. and Qiu, H. H., Eliminating background noise effect in micro-resolution particle image velocimetry, Applied Optics, 41 (2002), 6849.CrossRefGoogle Scholar
  14. Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: The Finite Volume Method, (1995) Langman Group Ltd.Google Scholar
  15. Wang, R. J., Lin, J. Z. and Li, Z. H., Analysis of electro-osmotic flow characteristics at joint of capillaries with saltation ζ-potential and dimension, Biomedical Microdevices, 7 (2005 (a)), 131.CrossRefGoogle Scholar
  16. Wang, R. J., Lin, J. Z. and Li, Z. H., Study on the impacting factors of transverse diffusion in the micro-channel of-sensor, Journal of Nanosci. and Nanotechnol., 5 (2005(b)), 1281.CrossRefGoogle Scholar
  17. Wong, P. K., Lee, Y. K. and Ho, C. M., Deformation of DNA molecules by hydrodynamic focusing, J. Fluid Mech., 497 (2003), 55.MATHCrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2006

Authors and Affiliations

  • Wang R. J. 
    • 1
    • 2
  • Lin J. Z. 
    • 1
  • Xie H. B. 
    • 1
  1. 1.Department of Mechanics, State Key Laboratory of Fluid Power Trans. and Contr.Zhejiang UniversityHangzhouChina
  2. 2.School of Mechanical EngineeringZhejiang University of Sci. and Tech.HangzhouChina

Personalised recommendations