Advertisement

Journal of Visualization

, Volume 2, Issue 3–4, pp 331–342 | Cite as

Injection of single and multiple vortices in an opposed-jet burner

  • Fiechtner G. J. 
  • Renard P. -H. 
  • Carter C. D. 
  • Gord J. R. 
  • Rolon J. C. 
Article

Abstract

A thorough understanding of turbulent reacting flows is essential to the continued development of practical combustion systems. Combustor codes can be validated using data such as those generated in this study of a vortex interacting with a nonpremixed, opposed-jet hydrogen-air flame. When experimental results are compared with model predictions, the underlying flowfield must be matched carefully. Since the vortex-injection process used in the present experiments can result in many types of vortices, including multiple vortices, restrictions on the experimental operation of the burner are required as well as careful vortex characterization. Vortex-characterization data are acquired using digital, two-color particle-image velocimetry (PIV), and the hydroxyl (OH) layer produced by the flame is imaged using planar laser-induced fluorescence (PLIF). The PIV and OH PLIF measurements are performed simultaneously. Good agreement with previous numerical-modeling predictions is obtained when experiments and computations are performed using similar vortex conditions.

Keywords

visualization turbulence vortex flamelet PLIF PIV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, S. and Solan, A., The Initial Development of a Submerged Laminar Round Jet, Journal of Fluid Mechanics, 59 (1973), 791–801.CrossRefGoogle Scholar
  2. Ashurst, W. T., Flame Propagation Through Swirling Eddies, A Recursive Pattern, Combustion Science and Technology, 92 (1993), 87.CrossRefGoogle Scholar
  3. Auerbach, D., Stirring Properties of Vortex Rings, Physics of Fluids A, 3 (1991), 1351–1355.CrossRefGoogle Scholar
  4. Brombacher, E. J., Flow Visualisation of Natural Gas Fuel Injection, M.S. Thesis, University of Toronto (1997).Google Scholar
  5. Cattolica, R. and Vosen, S., Combustion-Torch Ignition: Fluorescence Imaging of OH Concentration, Combustion and Flame, 68 (1987), 267–281.CrossRefGoogle Scholar
  6. Chen, S.-J. and Dahm, W. J. A., Diffusion Flame Structure of a Laminar Vortex Ring Under Microgravity Conditions, Twenty-Seventh Symposium (International) on Combustion, (1998), 2579–2586, The Combustion Institute, Pittsburgh, PA.Google Scholar
  7. Didden, N., On the Formation of Vortex Rings Rolling-Up and Production of Circulation, Zeitschrift für Angewandte Math. physik, 30 (1979), 101–116.CrossRefGoogle Scholar
  8. Driscoll, J. F., Sutkus, D. J., Roberts, W. L., Post, M. E. and Goss, L. P., The Strain Exerted by a Vortex on a Flame — Determined from Velocity Field Images, Combustion Science and Technology, 96 (1994), 213–229.CrossRefGoogle Scholar
  9. Durbin, M. D., Vangsness, M. D., Ballal, D. R. and Katta, V. R., Study of Flame Stability in a Step Swirl Combustor, Transactions of the ASME, 118 (1996), 308–315.Google Scholar
  10. Escudie, D., Stability of a Premixed Laminar V-Shaped Flame, Progress in Astronautics and Aeronautics, 113 (1988), 215–239.Google Scholar
  11. Fabris, D. and Leipmann, D., Vortex Ring Structure at Late Stages of Formation, Physics of Fluids, 9 (1997), 2801–2803.MATHCrossRefMathSciNetGoogle Scholar
  12. Fiechtner, G. J., Carter, C. D., Grinstead, K. D., Gord, J. R., Roquemore, W. M. and Rolon, J. C., Flame-Vortex Interactions in a Non-Premixed H2/N2/Air Counterflow Burner, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Cleveland, OH), (1998), AIAA 98-3770.Google Scholar
  13. Fiechtner, G. J., Carter, C. D., Katta, V. R., Gord, J. R., Donbar, J. M. and Rolon, J. C., Regimes of Interaction Between a Nonpremixed Hydrogen-Air Flame and an Isolated Vortex, 37th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), (1999), AIAA 99-0320.Google Scholar
  14. Garside, J. E., Hall, A. R. and Towsend, D. T. A., Flow States in Emergent Gas Streams, Nature, 152 (1943), 748.CrossRefGoogle Scholar
  15. Gharib, M., Rambod, E. and Shariff, K., A Universal Time Scale for Vortex Ring Formation, Journal of Fluid Mechanics, 360 (1998), 121–140.MATHCrossRefMathSciNetGoogle Scholar
  16. Glezer, A., The Formation of Vortex Rings, Physics of Fluids, 31 (1988), 3532–3542.CrossRefGoogle Scholar
  17. Glezer, A. and Coles, D., An Experimental Study of a Turbulent Vortex Ring, Journal of Fluid Mechanics, 221 (1990), 243–283.CrossRefGoogle Scholar
  18. Gogineni, S., Goss, L., Pestian, D. and Rivir, R., Two-Color Digital PIV Employing a Single CCD Camera, Experiments in Fluids, 25 (1998a), 320–328.CrossRefGoogle Scholar
  19. Gogineni, S., Goss, L. P. and Roquemore, W. M., Manipulation of a Jet in a Cross Flow, Experimental Thermal Fluid Science, 16 (1998b), 209–219.CrossRefGoogle Scholar
  20. Gord, J. R., Donbar, J. M., Fiechtner, G. J., Carter, C. D., Katta, V. R. and Rolon, J. C., Experimental and Computational Visualization of Vortex-Flame Interactions in an Opposed-Jet Burner, International Conference on Optical Technology and Image Processing in Fluid, Thermal, and Combustion Flow (Yokohama, Japan), (1998), Paper No. AB-082.Google Scholar
  21. Hancock, R. D., Schauer, F. R., Lucht, R. P., Katta, V. R. and Hsu, K. Y., Thermal Diffusion Effects and Vortex-Flame Interactions in Hydrogen Jet Diffusion Flames, Twenty-Sixth Symposium (International) on Combustion, (1996), 1087–1093, The Combustion Institute, Pittsburgh, PA.Google Scholar
  22. Heeg, R. S. and Riley, N., Simulations of the Formation of an Axisymmetric Vortex Ring, Journal of Fluid Mechanics, 339 (1997), 199–211.MATHCrossRefMathSciNetGoogle Scholar
  23. Hertzberg, J. R., Namazian, M. and Talbot, L., Tomographic Study of a Laminar Flame in a Karman Vortex Street, Combustion Science and Technology, 38 (1984), 205–216.CrossRefGoogle Scholar
  24. Hill, P. G. and Ouellette, P., Transient Turbulent Gaseous Fuel Jets for Diesel Engines, Journal of Fluids Engineering, 121 (1999), 93–101.CrossRefGoogle Scholar
  25. Hsu, K. Y., Carter, C. D., Katta, V. R. and Roquemore, W. M., Characteristics of Combustion Instability Associated with Trapped-Vortex Burner, 37th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), (1999), AIAA-99-0488.Google Scholar
  26. Hsu, K. Y., Chen. L. D., Katta, V. R., Goss, L. P. and Roquemore, W. M., Experimental and Numerical Investigations of the Vortex-Flame Interactions in a Driven Jet Diffusion Flame, 31st AIAA Aerospace Sciences Meeting & Exhibit (Reno, NV), (1993), AIAA-93-0455.Google Scholar
  27. James, S. and Mandia, C. K., Direct Numerical Simulation of a Laminar Vortex Ring, Physics of Fluids, 8 (1996), 2400–2414.MATHCrossRefGoogle Scholar
  28. Jarosinski, J., Lee, J. H. S. and Knystautas, R., Interaction of a Vortex Ring and a Laminar Flame, Twenty-Second Symposium (International) on Combustion, (1988), 505–514, The Combustion Institute, Pittsburgh, PA.Google Scholar
  29. Johari, H., Zhang, Q., Rose, M. J. and Bourque, S. M., Impulsively Started Turbulent Jets, AIAA Journal, 35 (1997), 657–662.CrossRefGoogle Scholar
  30. Katta, V. R., Carter, C. D., Fiechtner, G. J., Roquemore, W. M., Gord, J. R. and Rolon, J. C., Interaction of a Vortex With a Flat Flame Formed Between Opposing Jets of Hydrogen and Air, Twenty-Seventh Symposium (International) on Combustion, (1998a), 587–594, The Combustion Institute, Pittsburgh, PA.Google Scholar
  31. Katta, V. R., Hsu, K. Y. and Roquemore, W. M., Local Extinction in an Unsteady Methane-Air Jet Diffusion Flame, Twenty-Seventh Symposium (International) on Combustion, (1998b), 1121–1129, The Combustion Institute, Pittsburgh, PA.Google Scholar
  32. Katta, V. R. and Roquemore, W. M., Study on Trapped-Vortex Combustor — Effect of Injection on Dynamics of Non-Reacting and Reacting Flows in a Cavity, 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (Seattle, WA), (1997), AIAA-97-3256.Google Scholar
  33. Katta, V. R. and Roquemore, W. M., Numerical Studies on Trapped-Vortex Concepts for Stable Combustion, Transactions of the ASME, 120 (1998), 60–68.CrossRefGoogle Scholar
  34. Katta, V. R. and Roquemore, W. M., Studies on Unsteady Opposing-Jet Diffusion Flames, 37th AIAA Aerospace Sciences Meeting and Exhibit (Reno, NV), (1999), AIAA 99-0322.Google Scholar
  35. Konstantinov, M., Numerical Investigation of the Interaction of Coaxial Vortex Rings, International Journal of Numerical Methods for Heat & Fluid Flow, 7 (1997), 120–140.MATHCrossRefMathSciNetGoogle Scholar
  36. Kuo, T.-W., Syed, S. A. and Bracco, F. V., Scaling of Impulsively Started, Incompressible, Laminar Round Jets and Pipe Flows, AIAA Journal, 24 (1986), 424–428.CrossRefGoogle Scholar
  37. Lee, T.-W., Lee, J. G., Nye, D. A. and Santavicca, D. A., Local Response and Surface Properties of Premixed Flames During Interactions with Karman Vortex Streets, Combustion and Flame, 94 (1993), 146–160.CrossRefGoogle Scholar
  38. Leung, R. C. K., Chu, W. F., Tang, S. K. and Ko, N. W. M., Control of Vortex Pairing with Sound, AIAA Journal, 35 (1997), 802–809.MATHCrossRefGoogle Scholar
  39. Leung, R. C. K., Tang, S. K., Ho, I. C. K. and Ko, N. W. M., Vortex Pairing as a Model for Jet Noise Control, AIAA Journal, 34 (1996), 669–677.CrossRefGoogle Scholar
  40. Lim, T. T., On the Role of Kelvin-Helmholtz-Like Instability in the Formation of Turbulent Vortex Rings, Fluid Dynamics Research, 21 (1997), 47–56.CrossRefGoogle Scholar
  41. List, E. J., Turbulent Jets and Plumes, Annual Reviews of Fluid Mechanics, 14 (1982), 189–212.CrossRefGoogle Scholar
  42. Magarvey, R. H. and MacLatchy, C. S., The Formation and Structure of Vortex Rings, Canadian Journal of Physics, 42 (1964), 678–683.MATHGoogle Scholar
  43. Maxworthy, T., Some Experimental Studies of Vortex Rings, Journal of Fluid Mechanics, 81 (1977), 465–495.CrossRefGoogle Scholar
  44. Maxworthy, T., Comments on ‘Preliminary Study of Mutual Slip-Through of a Pair of Vortices,’ Physics of Fluids, 22 (1979), 200.CrossRefGoogle Scholar
  45. Mueller, C. J., Driscoll, J. F., Reuss, D. L. and Drake, M. C., Vorticity Generation and Attenuation as Vortices Convect Through a Premixed Flame, Combustion and Flame, 112 (1998), 342–358.CrossRefGoogle Scholar
  46. Mueller, C. J., Driscoll, J. F., Ruess, D. L. and Drake, M. C., Effects of Unsteady Stretch on the Strength of a Freely-Propagating Flame Wrinkled by a Vortex, Twenty-Sixth Symposium (International) on Combustion, (1996), 347–355, The Combustion Institute, Pittsburgh, PA.Google Scholar
  47. Mueller, C. J., Driscoll, J. F., Sutkus, D. J., Roberts, W. L., Drake, M. C. and Smooke, M. D., Effect of Unsteady Stretch Rate on OH Chemistry During a Vortex-Flame Interaction: To Assess Flamelet Models, Combustion and Flame, 100 (1995), 323–331.CrossRefGoogle Scholar
  48. Mueller, C. J. and Schefer, R. W., Coupling of a Diffusion Flame Structure to an Unsteady Vortical Flowfield, Twenty-Seventh Symposium (International) on Combustion, (1998), 1105–1112, The Combustion Institute, Pittsburgh, PA.Google Scholar
  49. Najm, H. N., Paul, P. H., Mueller, C. J. and Wyckoff, P. S., On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate, Combustion and Flame, 113 (1998), 312–332.CrossRefGoogle Scholar
  50. Nguyen, Q.-V. and Paul, P. H., The Time Evolution of a Vortex-Flame Interaction Observed via Planar Imaging of CH and OH, Twenty-Sixth Symposium (International) on Combustion, (1996), 357–364, The Combustion Institute, Pittsburgh, PA.Google Scholar
  51. Nitsche, M., Scaling Properties of Vortex Ring Formation at a Circular Tube Opening, Physics of Fluids, 8 (1996), 1848–1855.MATHCrossRefGoogle Scholar
  52. Nitsche, M. and Krasny, R., A Numerical Study of Vortex Ring Formation at the Edge of a Circular Tube, Journal of Fluid Mechanics, 276 (1994), 139–161.MATHCrossRefMathSciNetGoogle Scholar
  53. Nye, D. A., Lee, J. G., Lee, T.-W. and Santavicca, D. A., Flame Stretch Measurements During the Interaction of Premixed Flames and Karman Vortex Streets Using PIV, Combustion and Flame, 94 (1996), 167–176.CrossRefGoogle Scholar
  54. Oshima, Y., Kambe, T. and Saburo, A., Interaction of Two Vortex Rings Moving along a Common Axis of Symmetry, Journal of the Physical Society of Japan, 38 (1975), 1159–1166.CrossRefGoogle Scholar
  55. Oshima, Y., Noguchi, T. and Oshima, K., Numerical Study of Interaction of Two Vortex Rings, Fluid Dynamics Research, 1 (1986), 215–227.CrossRefGoogle Scholar
  56. Paul, P. H. and Najm, H. N., Planar Laser-Induced Fluorescence Imaging of Flame Heat Release Rate, Twenty-Seventh Symposium (International) on Combustion, (1998), 43–50, The Combustion Institute, Pittsburgh, PA.Google Scholar
  57. Petrov, C. and Ghoniem, A. F., Dynamics and Structure of Interacting Nonpremixed Flames, Combustion and Flame, 115 (1998), 180–194.CrossRefGoogle Scholar
  58. Poinsot, T., Trouve, A., Veynante, D., Candel, S. and Esposito, E., Vortex Driven Acoustically Coupled Combustion Instabilities, Journal of Fluid Mechanics, 177 (1987), 265–292.CrossRefGoogle Scholar
  59. Pullin, D., Vortex Ring Formation at Tube and Orifice Openings, Physics of Fluids, 22 (1979), 401–403.CrossRefGoogle Scholar
  60. Renard, P.-H., Rolon, J. C., Thevenin, D. and Candel, S., Wrinkling, Pocket Formation and Double Premixed Flame Interaction Processes, Twenty-Seventh Symposium (International) on Combustion, (1998), 659–666, The Combustion Institute, Pittsburgh, PA.Google Scholar
  61. Renard, P.-H., Rolon, J. C., Thevenin, D. and Candel, S., Investigations of Heat Release, Extinction, and Time Evolution of the Flame Surface for a Non-Premixed Flame Interacting with a Vortex, Combustion and Flame, 117 (1999), 189–205.CrossRefGoogle Scholar
  62. Riley, N., On the Behaviour of Pairs of Vortex Rings, Quorterly Journal of Mechauies and Applied Mathematics, 46 (1993), 521–539.MATHCrossRefMathSciNetGoogle Scholar
  63. Rizk, W., Experimental Studies of the Mixing Processes and Flow Configurations in Two-Cycle Engine Scavenging, Proceedings of the Institution of Mechanical Engineers, Series E, 172 (1958), 417–424.CrossRefGoogle Scholar
  64. Roberts, W. L. and Driscoll, J. F., A Laminar Vortex Interacting with a Premixed Flame: Measured Formation of Pockets of Reactants, Combustion and Flame, 87 (1991), 245–256.CrossRefGoogle Scholar
  65. Roberts, W. L., Driscoll, J. F., Drake, M. C. and Goss, L. P., Images of the Quenching of a Flame by a Vortex — To Quantify Regimes of Turbulent Combustion, Combustion and Flame, 94 (1993), 58–69.CrossRefGoogle Scholar
  66. Roberts, W. L., Driscoll, J. F., Drake, M. C. and Ratcliffe, J. W., OH Fluorescence Images of the Quenching of a Premixed Flame During an Interaction with a Vortex, Twenty-Fourth Symposium (International) on Combustion, (1992), 169–176, The Combustion Institute, Pittsburgh, PA.Google Scholar
  67. Rolon, J. C., Aguerre, F. and Candel, S., Experiments on the Interaction Between a Vortex and a Strained Diffusion Flame, Combustion and Flame, 100 (1995), 422–429.CrossRefGoogle Scholar
  68. Roquemore, W. M. and Katta, V. R., Role of Flow Visualization in the Development of UNICORN, International Conference on Optical Technology and Image Processing in Fluid, Thermal, and Combustion Flow (Yokohama, Japan), (1998), Paper No. KL-310.Google Scholar
  69. Roquemore, W. M. and Katta, V. R., Role of Flow Visualization in the Development of UNICORN, to appear in Journal of Visualization, 2–314, 1999.Google Scholar
  70. Roquemore, W. M., Reddy, V. K., Hedman, P. O., Post, M. E., Chen, T. H., Goss, L. P., Trump, D., Vilimpoc, V. and Sturgess, G. J., Experimental and Theoretical Studies in a Gas-Fueled Research Combustor, 29th AIAA Aerospace Sciences Meeting (Reno, NV), (1991), AIAA-91-0639.Google Scholar
  71. Rutland, C. J. and Ferziger, J. H., Simulations of Flame-Vortex Interactions, Combustion and Flame, 84 (1991), 343–360.CrossRefGoogle Scholar
  72. Saffman, P. G., Vortex Dynamics, (1992), Cambridge University Press, New York.MATHGoogle Scholar
  73. Samaniego, J.-M., Generation of Two-Dimensional Vortices in a Cross Flow, Annual Research Briefs-1992, Center for Turbulence Research (NASA Ames Research Center/Stanford University), (1992a), 431–441.Google Scholar
  74. Samaniego, J.-M., Stretch-Induced Quenching in Vortex-Flame Interactions, Annual Research Briefs-1993, Center for Turbulence Research (NASA Ames Research Center/Stanford University), (1992b), 205–218.Google Scholar
  75. Santoro, V. S., Kyritsis, D. C. and Gomez, A., A Comparison of the Interaction of Laminar Vortices with Either Gaseous or Spray Counterflow Diffusion Flames, First Joint Meeting of the United States Sections of the Combustion Institute (Washington, DC), (1999), Paper No. 21.Google Scholar
  76. Shariff, K. and Leonard, A., Vortex Rings, Annual Reviews of Fluid Mechanics, 24 (1992), 235–279.CrossRefMathSciNetGoogle Scholar
  77. Sinibaldi, J. O., Mueller, C. J. and Driscoll, J. F., Local Flame Propagation Speeds Along Wrinkled, Unsteady, Stretched Premixed Flames, Twenty-Seventh Symposium (International) on Combustion, (1998a), 827–832, The Combustion Institute, Pittsburgh, PA.Google Scholar
  78. Sinibaldi, J. O., Mueller, C. J., Tulkki, A. E. and Driscoll, J. F., Suppression of Flame Wrinkling by Buoyancy: The Baroclinic Stabilization Mechanism, AIAA Journal, 36 (1998b), 1432–1438.CrossRefGoogle Scholar
  79. Southerland, K. B., Porter, J. R., Dahm, W. J. A. and Buch, K. A., An Experimental Study of the Molecular Mixing Process in an Axisymmetric Laminar Vortex Ring, Physics of Fluids A, 3 (1991), 1385–1392.CrossRefGoogle Scholar
  80. Takagi, T., Yoshikawa, Y., Yoshida, K., Komiyama, M. and Kinoshita, S., Studies on Strained Non-Premixed Flames Affected by Flame Curvature and Preferential Diffusion, Twenty-Sixth Symposium (International) on Combustion, (1996), 1103–1110, The Combustion Institute, Pittsburgh, PA.Google Scholar
  81. Takahashi, F., Schmoll, W. J., Trump, D. D. and Goss, L. P., Vortex-Flame Interactions and Extinction in Turbulent Jet Diffusion Flames, Twenty-Sixth Symposium (International) on Combustion, (1996), 145–152, The Combustion Institute, Pittsburgh, PA.Google Scholar
  82. Thevenin, D., Renard, P.-H., Rolon, J. C. and Candel, S., Structure of a Nonpremixed Flame Interacting with Counterrotating Vortices, Twenty-Sixth Symposium (International) on Combustion, (1996), 1079–1086, The Combustion Institute, Pittsburgh, PA.Google Scholar
  83. Thevenin, D., Renard, P.-H., Rolon, J. C. and Candel, S., Exctinction Processes During a Non-Premixed Flame/Vortex Interaction, Twenty-Seventh Symposium (International) on Combustion, (1998), 719–726, The Combustion Institute, Pittsburgh, PA.Google Scholar
  84. Weidman, P. D. and Riley, N., Vortex Ring Pairs: Numerical Simulation and Experiment, Journal of Fluid Mechanics, 257 (1993), 311–337.CrossRefMathSciNetGoogle Scholar
  85. Weigand, A. and Gharib, M., On the Evolution of Laminar Vortex Rings, Experiments in Fluids, 22 (1997), 447–457.CrossRefGoogle Scholar
  86. Widnall, S. E., The Structure and Dynamics of Vortex Filaments, Annual Review of Fluid Mechanics, 7 (1975), 141–165.CrossRefGoogle Scholar
  87. Witze, P. O., Hot-Film Anemometer Measurements in a Starting Turbulent Jet, AIAA Journal, 21 (1983), 308–309.CrossRefGoogle Scholar
  88. Yamada, H. and Matsui, T., Preliminary Study of Mutual Slip-Through of a Pair of Vortices, Physics of Fluids, 21 (1978), 292–294.CrossRefGoogle Scholar
  89. Yamada, H. and Matsui, T., Mutual Slip-Through of a Pair of Vortex Rings, Physics of Fluids, 22 (1979a), 1245–1249.CrossRefGoogle Scholar
  90. Yamada, H. and Matsui, T., Reply to Comments of T. Maxworthy, Physics of Fluids, 22 (1979b), 201.CrossRefGoogle Scholar
  91. Yaros, R., The Evolution of a Suddenly Initiated Semiconfined, Two-Dimensional, Turbulent Jet, Ph.D. Dissertation, Pennsylvania State University (1977).Google Scholar
  92. Yoshida, K. and Takagi, T., Transient Local Extinction and Reignition Behavior of Diffusion Flames Affected by Flame Curvature and Preferential Diffusion, Twenty-Seventh Symposium (International) on Combustion, (1998), 685–692, The Combustion Institute, Pittsburgh, PA.Google Scholar
  93. You, Y. H., Lee, D. K. and Shin, H. D., Visual Investigation of a Vortex Ring Interacting with a Nonpremixed Flame, Combustion Science and Technology, 139 (1998), 365–383.CrossRefGoogle Scholar

Copyright information

© The Visualization Society of Japan 2000

Authors and Affiliations

  • Fiechtner G. J. 
    • 1
    • 2
  • Renard P. -H. 
    • 3
  • Carter C. D. 
    • 1
    • 2
  • Gord J. R. 
    • 1
  • Rolon J. C. 
    • 3
  1. 1.Air Force Research LaboratoryPropulsion DirectorateWright-Patterson Air Force BaseUSA
  2. 2.Innovative Scientific Solutions, Inc.DaytonUSA
  3. 3.Laboratoire d’Énergétique Moléculaire et Macroscopique, CombustionÉcole Centrale Paris and CNRSChâtenay-Malabry CedexFrance

Personalised recommendations