Skip to main content
Log in

Sequence analysis of a DNA fragment fromSinorhizobium fredii USDA257 which extends the nitrogen fixation host range ofRhizobium species NGR234 to soybean,Glycine max (L.) Merr cultivar Peking

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

A fragment of DNA (pBTBX) from the genome ofSinorhizobium fredii USDA257 was sequenced by shotgun strategy to identify the potential genes which enabled theRhizobium species NGR234 to fix nitrogen on soybean,Glycine max (L.) Merr cv. Peking. The total length of the cosmid is 32,824 base pairs with a GC content of 61%. A 29 open reading frames (ORF) were identified representing 71.8% (23,574 bp) of the cosmid. Out of these ORF, 96.5% (22,749 bp) were identical and similar to reported and hypothetical genes and proteins. The remaining 3.5% (825 bp) had no apparent similarity to any genes in the data base. Gene and gene products found on the DNA fragment include those involved in the synthesis of FeMo component of nitrogenase, regulation of nitrogen fixation, transport of amino acids and sugars, chemotaxis and transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames, P. and Bergman, K. 1981. Competitive advantage provided by bacterial motility in the formation of nodules byRhizobium meliloti.Journal of Bacteriology 148: 728–729.

    CAS  PubMed  Google Scholar 

  • Balatti, P.A. and Pueppke, S.G. 1992. Identification of North American soybean lines that form nitrogen-fixing nodules withRhizobium fredii USDA257.Canadian Journal of Plant Science 72: 49–55.

    Google Scholar 

  • Borofsky, M. 1995. GeneMark, version 2.3. Georgia Institute of Technology, School of Biology, Atlanta, GA, USA

    Google Scholar 

  • Brock, T.D., Smith, D.W., and Madigan, M.T. 1984.Biology of Microorganisms. Fourth edition. Prentice-Hall Int., Inc. pp. 108–113.

  • Caetano-Anollés, G., Wall, L.G., Micheli, AT.D., Macchi, E.M., Bauer, W.D., and Favelukes, G. 1988. Role of motility and chemotaxis in efficiency of nodulation byRhizobium meliloti.Plant Physiology 86: 1228–1235.

    Article  PubMed  Google Scholar 

  • Cloutier, J., Laberge, S., and Antoun, H. 1997. Sequence and mutational analysis of the 6.7-kb region containingnodAFEG genes ofRhizobium species strain N33: Evidence of DNA rearrangements.Molecular Plant Microbe Interaction 10: 401–406.

    Article  CAS  Google Scholar 

  • Cooper, J.E. 2007. Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue.Journal of Applied Microbiology 103: 1355–1365.

    Article  CAS  PubMed  Google Scholar 

  • Debellé, F., Moulin, L., Mangin, B., Dénarié, J., and Boivin, C. 2001. Nod genes and Nod signals and the evolution of theRhizobium-legume symbiosis.Acta Biochimica Polonicá 48: 359–365.

    PubMed  Google Scholar 

  • Fellay, R., Rochepeau, P., Rélic, B., and Broughton, W.J. 1995b. Signals to and emanating fromRhizobium largely control symbiotic specificity. Histopathological, Biochemical, Genetic and Molecular Bases. Vol. 1:Prokaryotes. Singh, U.S. Singh, R.P., and Khomoto, K., eds. Pergamon Elsevier Science Ltd., Oxford. pp. 199–220.

    Google Scholar 

  • Finnie, C., Hartley, N.M., Findlay, K.C., and Downie, J.A. 1997. TheRhizobium leguminosarum prsDE genes are required for secretion of several proteins, some of which influence nodulation, symbiotic nitrogen fixation and exopolysaccharide modification.Molecular Microbiology 25: 135–146.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, H.M. 1994. Genetic regulation of nitrogen fixation in rhizobia.Microbiology Review 58: 352–386.

    CAS  Google Scholar 

  • Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A., and Perret, X. 1997. Molecular basis of symbiosis betweenRhizobium and legumes.Nature 387: 394–401.

    Article  CAS  PubMed  Google Scholar 

  • Freiberg, C., Perret, X., Broughton, W.J., and Rosenthal, A. 1996. Sequencing the 500kb GC-rich symbiotic replicon ofRhizobium species NGR234 using dye terminators and thermostable “Sequenase”: a beginning.Genome Research 6: 590–600.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D. 1983. Studies on transformation ofEscherichia coli with plasmids.Journal of Molecular Biology 166: 557–580.

    Article  CAS  PubMed  Google Scholar 

  • Hanin, M., Jabbouri, S., Broughton, W.J., Fellay, R., and Quesada-Vincens, D. 1998. Molecular aspects of host-specific nodulation. In:Plant-Microbe Interactions. G.X. and Keen, N.T., eds. American Phytopathology Society, St. Paul, MN, USA. pp. 1–29.

    Google Scholar 

  • Henikoff, S., Haughn, G.W., Calvo, J.M., and Wallace, J.C. 1988. A large family of bacterial activator proteins.Proceedings of the National Academy of Science, USA 85: 6602–6606.

    Article  CAS  Google Scholar 

  • Horvath, B., Kondorosi, E., John, M., Schmidt, J., Torok, I., Gyorgypal, Z., Barabas, I., Wieneke, U., Schell, J., and Kondorosi, A. 1986. Organization, structure and symbiotic function ofRhizobium meliloti nodulation genes determining host specificity for alfalfa.Cell 46: 335–343.

    Article  CAS  PubMed  Google Scholar 

  • Keyser, H.H., Bohlool, B.B., Hu, T.S., and Weber, D.F. 1982. Fast-growing rhizobia isolated from root nodules of soybean.Science 215: 1631–1632.

    Article  PubMed  Google Scholar 

  • Kröl, J. and Skorupska, A. 1997. Identification of genes inRhizobium leguminosarum bv.trifolii whose products are homologous to a family of ATP-binding proteins.Microbiology UK 143: 1389–1394.

    Article  Google Scholar 

  • Lewin, A., Rosenberg, C., Meyer, Z.A.H., Wong, C.H., Nelson, L., Manen, J-F., Stanley, J., Dowling, D.N., Dénaire, J., and Broughton, W.J. 1987. Multiple host-specificity loci of the broad host-rangeRhizobium species NGR234 selected using the widely compatible legumeVigna unguiculata.Plant Molecular Biology 8: 447–459.

    Article  CAS  Google Scholar 

  • Paulsen, I.T., Beness, A.M., and Saier, M.H. Jr. 1997. Computer-based analyses of the protein constituents of transport systems catalyzing export of complex carbohydrates in bacteria.Microbiology 143: 2685–2699.

    Article  CAS  PubMed  Google Scholar 

  • Perret, X., Staehelin, C., and Broughton, W.J. 2000. Molecular basis of symbiotic promiscuity.Molecular Biology Review 64: 180–201.

    Article  CAS  Google Scholar 

  • Pueppke, S.G. and Broughton, W.J. 1999.Rhizobium sp. strain NGR234 andR. fredii USDA257 share exceptionally broad, nested host ranges.Molecular Plant Microbe Interaction 12: 293–318.

    Article  CAS  Google Scholar 

  • Rélic, B., Perret, X., Estrada-Garcia, M.T., Kopcinska, J., Golinowski, W., Krishnan, H.B., Pueppke, S.G., and Broughton, W.J. 1994. Nod factors ofRhizobium are a key to the legume door.Molecular Microbiology 13: 171–178.

    Article  PubMed  Google Scholar 

  • Roelvinic, P. and van den Bos, R.C. 1989. Regulation of nitrogen fixation in diazotrophs: the regulatorynifA gene and its characteristics.Acta Botanica Neerlandica 38: 233–252.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T.A. 1989.Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. pp. 136–147.

    Google Scholar 

  • Shaw, L.J., Morris, P., and Hooker, J.E. 2006. Perception and modification of plant flavonoid signals by rhizosphere microorganisms.Environmental Microbiology 8: 1867–1880.

    Article  CAS  PubMed  Google Scholar 

  • Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.P., and Vierheilig, H. 2007. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions.Molecules 12: 1290–1306.

    Article  CAS  PubMed  Google Scholar 

  • Stephanie, S., Pao, I., Paulsen, T., and Saier, M.H. Jr. 1998. Major facilitator superfamily.Molecular Biological Review 62: 1–34.

    Google Scholar 

  • Sternberg, N., Sauer, B., Hoess, R., and Abremski, K. 1986. Bacteriophage P1cre gene and its regulatory region evidence for multiple promoters and for regulation by DNA methylation.Journal of Molecular Biology 187: 197–212.

    Article  CAS  PubMed  Google Scholar 

  • Tong, S., Porco, A., Isturiz, T., and Conway, T. 1996. Cloning and molecular genetic characterization of theEscherichia coli gntR,gntK andgntU genes of Gntl, the main system for gluconate metabolism.Journal of Bacteriology 178: 3260–3269.

    CAS  PubMed  Google Scholar 

  • Trinick, M.J. 1980. Relationships amongst the fast-growingRhizobium ofLablab purpureus, Leucaena łeucocephala, Mimosa species,Acacia farnesiana andSesbaenia grandiflora and their affinities with otherRhizobium groups.Journal of Applied Bacteriology 49: 39–53.

    Google Scholar 

  • Wilson, R.L. and Stauffer, G.V. 1994. DNA sequence and characterization of GcvA, a LysR family regulatory protein for theEscherichia coli glycine cleavage enzyme system.Journal of Bacteriology 176: 2862–2868.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Boboye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boboye, B., Nyakatura, G., Rosenthal, A. et al. Sequence analysis of a DNA fragment fromSinorhizobium fredii USDA257 which extends the nitrogen fixation host range ofRhizobium species NGR234 to soybean,Glycine max (L.) Merr cultivar Peking. Symbiosis 48, 110–119 (2009). https://doi.org/10.1007/BF03179990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179990

Keywords

Navigation