Advertisement

Symbiosis

, Volume 47, Issue 3, pp 161–174 | Cite as

Variation among common-bean accessions (Phaseolus vulgaris L.) from the Iberian Peninsula for N2-dependent growth and phosphorus requirement

  • A. P. Rodiño
  • R. Metral
  • S. Guglielmi
  • J. J. Drevon
Article

Abstract

The common-bean often faces phosphorus deficiency in soils where it is grown. Such a deficiency is a major limitation to yield improvement, especially as the common-bean depends upon nitrogen fixation. Screening for symbiotic nitrogen fixation under phosphorus deficiency was performed with 33 common-bean accessions representing the diversity of 15 European market classes from the Iberian Peninsula. These accessions were inoculated withRhizobium tropici CIAT899 and grown in an aerated nitrogen-free nutrient solution at deficientversus sufficient phosphorous supplies (75 vs. 250 μmol plan−1 week−1) in a glasshouse. A large variability in N2-dependent growth under P deficiency was found with most tolerance to P deficiency among late type IV Andean landraces, with the exception of 3 early type I Andean landraces. From this screening four contrasting landraces were selected for their high efficiency in the use of P for their symbiotic N nutrition, and compared with the cultivar Linex in fields of a reference production area over 3 years. The landraces from the Iberian Peninsula expressed a higher growth than the cultivar Linex, although they showed a lower nodulation. We hypothesize that the identified P tolerance among Iberian Peninsula accessions may be useful for improving symbiotic nitrogen fixation in the common-bean when growth is limited by available soil-P and could contribute to sustainable farming systems by reducing farmers’ dependence on fertilizers.

Keywords

Genetic resources P deficiency Phaseolus vulgaris Rhizobiaceae symbiosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Araujo, A.P., Teixeira M.G., and De Almeida, D.L. 1997. Phosphorus efficiency of wild and cultivated landraces of com~on-bean (Phaseolus vulgaris L.) under biological nitrogen fixation.Soil Biology & Biochemistry 29: 951–957.CrossRefGoogle Scholar
  2. Bliss, F.A. 1993. Breeding common-bean for improved biological nitrogen fixation.Plant and Soil 152: 71–79.CrossRefGoogle Scholar
  3. Chaverra, M.H. and Graham, P.H. 1992. Cultivar variation affecting early nodulation of common-bean.Crop Science 32: 1432–1436.Google Scholar
  4. Christiansen, I. and Graham, P.H. 2002. Variation in di-nitrogen fixation among Andean bean (Phaseolus vulgaris L.) landraces grown at deficient and high levels of phosphorous supply.Field Crop Research 73: 133–142.CrossRefGoogle Scholar
  5. De Ron, A.M., Santalla, M., Barcala, N., Rodino, A.P., Casquero, P.A., and Menéndez, M.C. 1997.Phaseolus spp. at the Mision Biologica de Galicia.Plant Genetic Resources Newsletter 112: 100.Google Scholar
  6. Drevon, J.J. and Hartwig, U.A. 1997. Phosphorous deficiency increases the argon induced decline of nodule nitrogenase activity in soybean and alfalfa.Planta 201: 463–469.CrossRefGoogle Scholar
  7. Escribano, M.R., Santalla, M., Casquero, P.A., and De Ron, A.M. 1998. Patterns of genetic diversity in landraces of commonbean (PhaseoIus vulgaris L.) from Galicia.Plant Breeding 117: 49–56.CrossRefGoogle Scholar
  8. Gepts, P. and Bliss, F.A. 1988. Dissemination pathways of common-bean (Phaseolus vulgaris, Fabaceae) deduced from phaseolin electrophoretic variability. II. Europe and Africa.Economic Botany 42: 86–104.Google Scholar
  9. Gepts, P., Osborn, T.C., Rashka, K., and Bliss, F.A. 1986. Phaseolin-protein variability in wild forms and landraces of the common-bean (Phaseolus vulgaris): evidence for multiples centres of domestication.Economic Botany 40: 451–468.Google Scholar
  10. Graham, P.H. 1981. Some problems of nodulation and symbiotic fixation inPhaseolus vulgaris L. A Review.Field Crops Research 4: 93–112.CrossRefGoogle Scholar
  11. Hernandez, G. and Drevon, J.J. 1991. Influence of oxygen and acetylene during in situ open-deficient assays of nitrogenas a activity (C2H2 reduction) inPhaseolus vulgaris root-nodules.Journal of Plant Physiology 138: 587–590.Google Scholar
  12. Herridge, D. and Rose, I. 2000. Breeding for enhanced nitrogen fixation in crop legumes.Field Crops Research 65: 229–248.CrossRefGoogle Scholar
  13. Isoi, T. and Yoshida, S. 1991. Deficient nitrogen fixation of common-bean (Phaseolus vulgaris).Soil Science & Plant Nutrition 37: 559–563.Google Scholar
  14. Israel, D.W. 1987. Investigation of the role of phosphorus in symbiotic dinitrogen fixation.Plant Physiology 84: 835–840.CrossRefPubMedGoogle Scholar
  15. Kipe-Nolt, J.A., Vargas, H., and Giller, K.E. 1993. Nitrogen fixation in breeding lines ofPhaseolus vulgaris L.Plant and Soil 152: 103–106.CrossRefGoogle Scholar
  16. Kovas, S., Labidi, N., Debez, A., and Abdelly, C. 2005. Effect of P on nodule formation and N fixation bean.Agronomy for Sustainable Development 25: 389–393.CrossRefGoogle Scholar
  17. Krouma, A., Drevon, J.J., and Abdelly, C. 2006. Genotypic variation of N2-fixing common-bean (Phaseolus vulgaris L.) in response to iron deficiency.Journal of Plant Physiology 163: 1094–1100.CrossRefPubMedGoogle Scholar
  18. Lynch, J.P. and Beebe, S.E. 1995. Adaptation of beans (Phaseolus vulgaris L.) to deficient Phosphorous availability.Hortscience 30: 1165–1171.Google Scholar
  19. Martensson, A.M. and Rydberg, J. 1996. Cultivar x rhizobial strain interactions in peas with respect to early symbiosis, nodule initiation and N uptake.Plant Breeding 115: 402–406.CrossRefGoogle Scholar
  20. McClean, P.E., Myers, J.R., and Hammond, J.J. 1993. Coefficient of parentage and cluster analysis of North American dry bean cultivars.Crop Science 33: 190–197.Google Scholar
  21. Miranda B.D. and Bliss, F.A. 1991. Selection for increased seed nitrogen accumulation in common-bean: Implications for improving dinitrogen fixation and seed yield.Plant Breeding 106: 301–311.CrossRefGoogle Scholar
  22. Park, S.J. and Buttery, B.R. 1989. Identification and characterisation of common-bean (Phaseolus vulgaris L.) lines well nodulated in the presence of high nitrate.Plant and Soil 119: 237–244.CrossRefGoogle Scholar
  23. Pereira, P.A.A. and Bliss, F.A. 1989. Selection of common-bean (Phaseolus vulgaris L.) for N2 fixation at different levels of available phosphorus under field and environmentally sufficientled conditions.Plant and Soil 115: 75–82.CrossRefGoogle Scholar
  24. Pereira, P.A.A., Miranda, B.D., Attewell, K.A., Kmiecik, K.A. and Bliss, F.A. 1989. Selection for increased nodule number in common-bean (Phaseolus vulgaris L.).Plant and Soil 148: 203–209.CrossRefGoogle Scholar
  25. Provorov, N.A. and Tikhonovich, I.A. 2003. Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis.Genetic Resources and Crop Evolution 50: 89–99.CrossRefGoogle Scholar
  26. Rey-Poiroux, X. and Drevon, J.J. 2003. Variabilité de la fixation symbiotique de l’azote chez des lignées de haricot blanc type lingot, In:Fixation Symbiotique de l’Azote et Développement Durable dans le Bassin Méditerranéen. Drevon, J.J. and Sifi, B., eds. INRA Les Colloques, Paris, 100. pp. 141–148.Google Scholar
  27. Ribet, J. and Drevon, J.J. 1995. Increase in permeability to oxygen and in oxygen uptake of soybean nodules under limiting phosphorus nutrition.Physiologia Plantarum 94: 298–304.CrossRefGoogle Scholar
  28. Ribet, J. and Drevon, J.J. 1996. The phosphorous requirement of N2-fixing and urea-fedAcacia mangium.New Phytologist 132: 383–390.CrossRefGoogle Scholar
  29. Rodiño, A.P. 2001. Caracterización morfoagronómica y bioquímica de germoplasma de judía común (Phaseolus vulgaris L.) de España. Doctoral Thesis. University of Santiago de Compostela, Spain.Google Scholar
  30. Rodiño, A.P., Santalla, M., De Ron, A.M., and Singh, S.P. 2003. A core collection of common-bean from the Iberian Peninsula.Euphytica 131: 165–175.CrossRefGoogle Scholar
  31. Rodiño, A.P., González, A.M., Santalla, M., De Ron, A.M., and Singh, S.P. 2006. Novel genetic variation of the common-bean in Europe.Crop Science 46: 2540–2546.CrossRefGoogle Scholar
  32. Rosas, J.C., Castro, J.A., Robleto, E.A., and Handelsman, J. 1998. A method for screeningPhaseolus vulgaris L. germplasm for preferential nodulation with a selectedRhizobium etli strain.Plant and Soil 203: 71–78.CrossRefGoogle Scholar
  33. Santalla, M., De Ron, A.M., and Voysest, O. 2001. European bean market classes. In:Catalogue of Bean Genetic Resources. Amurrio, M., Santalla, M., and De Ron, A.M. eds. PHASELIEU FAIR 3463- MBG-CSIC, Fundación Pedro Barrié de la Maza, Pontevedra, Spain. pp. 79–94.Google Scholar
  34. Santalla, M., Rodiño, A.P., and De Ron, A.M. 2002. Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for common-bean.Theoretical and Applied Genetics 104: 934–944.CrossRefPubMedGoogle Scholar
  35. SAS Institute. 2000.The SAS System. SAS online Doc. HTML Format. Version eight. SAS Institute. Cary, NC, USA.Google Scholar
  36. Singh, S.P. 1991. Breeding for seed yield. In:Common-Bean: Research for Crop Improvement. van Schoonhoven, A. and Voysest, O., eds. CAB International, Wallingford, UK and CIAT, Cali, Colombia. pp. 383–443.Google Scholar
  37. Singh, S.P., Teran, H., Munoz, C.G., Osorno, J.M., Takegami, J.C., and Thung, M.D.T. 2003. Deficient soil fertility tolerance in landraces and improved common-bean landraces.Crop Science 43: 110–119.CrossRefGoogle Scholar
  38. Tang, C., Hinsinger, P., Jaillard, B., Rengel, Z., and Drevon, J.J. 2001. Effect of phosphorous deficiency on the growth, symbioitic N2 fixation and proton release by two bean (Phaseolus vulgaris) genotypes.Agronomie 21: 683–689.CrossRefGoogle Scholar
  39. Thung, M. 1991. Bean agronomy in monoculture. In:Common-Bean Research for Crop Improvement. van Schoonhoven, A. and Voysest, O., eds. CAB International, Wallingford, UK and ClAT, Cali, Colombia. pp. 737–834.Google Scholar
  40. Tssvetkova, G.E. and Georgiev, G.I. 2003. Effect of phosphorous nutrition on the nodulation, nitrogen fixation and nutrient-use efficiency ofBradyrhizobium japonicum soybean (Glycine max L. Merr) symbiosis.Bulgarian Journal of Plant Physiology 331–335.Google Scholar
  41. Vadez, V. 1996. Variabilité génétique de la fixation d’azote sous carence en phosphore chez le haricot: relations avec l’efficacité d’utilisation du P et la permeabilite nodulaire a l’oxygene. PhD Thesis, Montpellier. 150 pp.Google Scholar
  42. Vadez, V. and Drevon, J.J. 2001. Genotypic variability in phosphorus use efficiency for symbiotic N2 fixation in common-bean (Phaseolus vulgaris).Agronomie 21: 691–699.CrossRefGoogle Scholar
  43. Vadez, V., Rodier, F., Payre, H., and Drevon, J.J. 1996. Nodule permeability to O2 and nitrogenase linked respiration in bean landraces varying in the tolerance of N2 fixation to P deficiency.Plant Physiology and Biochemistry 34: 871–878.Google Scholar
  44. Vadez, V.D., Beck, P., and Drevon, J.J. 1997. Utilization of the acetylene reduction assay to screen for tolerance of symbiotic N2 fixation to limiting P nutrition in common-bean.Physiologia Plantarum 99: 227–232.CrossRefGoogle Scholar
  45. Vadez, V., Laso, J.H., Beck, D.P., and Drevon, J.J. 1999. Variability of N2-fixation in common-bean (Phaseolus vulgaris L.) under P deficiency is related to P use efficiency.Euphytica 106: 231–242.CrossRefGoogle Scholar
  46. Vadez, V. and Drevon, J.J. 2001. Genotypic variability in P use efficiency for symbiotic N2 fixation in common-bean (Phaseolus vulgaris L.).Agronomie 21: 691–699.CrossRefGoogle Scholar
  47. Vincent, J.M. 1970.Manual for the Practical Study of Root Nodule Bacteria. Backwell Scientific Publications, Oxford, UK. pp. 164.Google Scholar
  48. Yan, X., Lynch, J.P., and Beebe, S.E. 1995. Genetic variation for phosphorus efficiency of common-bean in contrasting soil types: II. Yield response.Crop Science 35: 1094–1099.CrossRefGoogle Scholar

Copyright information

© Springer 2009

Authors and Affiliations

  • A. P. Rodiño
    • 1
  • R. Metral
    • 2
  • S. Guglielmi
    • 2
  • J. J. Drevon
    • 2
  1. 1.Genetic Resources DepartmentMisión Biológica de Galicia (MBG-CSIC)PontevedraSpain
  2. 2.INRA-Montpellier-SupAgroUMR 1222MontpellierFrance

Personalised recommendations