Skip to main content
Log in

Mitochondrial alkaline phosphatase as an intracellular signal in the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in LLC-PK1 cells

Fosfatasa alcalina mitocondrial como señal intracelular en la síntesis de 1,25(OH)2D3 y 24,25(OH)2D3 en células LLC-PK1

  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In previous works we have found a mitochondrial alkaline phosphatase (AP) activity in LLC-PK1. The aim of this work has been to study the possible involvement of mitochondrial AP activity in the synthesis of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) from the substrate 25(OH)D3. Renal phenotype LLC-PK1 cells were incubated with 25(OH)D3 as substrate and treated with or without 1,25(OH)2D3, forskolin, 12-myristate-13-acetate (PMA) and 1,25(OH)2D3 in conjunction with PMA. Incubation of LLC-PK1 cells with forskolin (adenylate cyclase activator) not only stimulated the 1-hydroxylase and inhibited the 24-hydroxylase activities but also increased the mitochondrial AP activity. The addition of 1,25(OH)2D3, the main activator of 24-hydroxylase, produced a decrease of mitochondrial AP activity, a decrease of 1,25(OH)2D3 synthesis and an increase of the 24,25(OH)2D3 synthesis. Incubation with PMA, a potent activator of protein kinase C, did not produce any changes in mitochondrial AP activity, but an inhibition of 1,25(OH)2D3 and an activation of 24,25(OH)2D3 synthesis were found. Moreover, incubation of LLC-PK1 cells with PMA in conjunction with 1,25(OH)2D3 produced an additive effect in the decrease of 1,25(OH)2D3 and an increase of 24,25(OH)2D3 synthesis remaining mitochondrial AP activity as cells treated only with 1,25(OH)2D3. Our results suggest that mitochondrial AP activity could be involved as an intracellular signal in the regulation of 25(OH)D3 metabolism to the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in renal phenotype LLC-PK1 cells through cAMP protein kinase system.

Resumen

En trabajos previos hemos encontrado actividad FA mitocondrial en células LLC-PK1 de fenotipo renal. Se estudian en este trabajo la posible implicación de la FA mitocondrial en la síntesis de la 1,25-dihydroxyvitamin D3 (1,25 (OH)2D3) y de la 24,25-dihydroxyvitamina D3 (24,25(OH)2D3) en células de fenotipo renal LLC-PK1. Las células se incubaron con el sustrato 25-hydroxyvitamin D3 (25(OH)D3) en ausencia (control) y presencia de 1,25 (OH)2D3, forskolina, 12-myristate-13-acetato (PMA) o 1,25(OH)2 D3 junto con el PMA. La presencia de forskolina, activador de la adenilato ciclasa, no sólo estimuló la actividad de la 1-hidroxilasa e inhibió la actividad de la 24-hidroxilasa, sino que también incrementó la actividad de la FA mitocondrial. La incubación en presencia de 1,25(OH)2D3, principal activador de la 24-hidroxilasa, produjo descenso de la FA mitocondrial seguido de descenso de la síntesis de 1,25(OH)2D3 e incremento de la de 24,25(OH)2D3. Por otra parte, la presencia del PMA, potente activador de la proteína quinasa C, no produjo cambios en la actividad de la FA mitocondrial, pero se observó inhibición de la síntesis de 1,25(OH)2D3 y activación de 24,25 (OH)2D3. Por último, la incubación de las células LLC-PK1 conjuntamente con 1,25(OH)2D3 y PMA produjo efectos aditivos en el descenso de la síntesis de 1,25(OH)2D3 y en el incremento de la séntesis de 24,25 (OH)2D3, permaneciendo la actividad FA mitocondrial en niveles similares a los encontrados tras el tratamiento con 1,25(OH)2D3. Nuestros resultados sugieren que la actividad FA mitocondrial podría estar implicada como una señal intracelular en la regulación del metabolismo de la 25(OH)2D3 para sinterizar 1,25(OH)2D3 y 24,25(OH)2D3 en células de fenotipo renal LLC-PK1 a través del sistema cAMP-proteína quinasa A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Armbrecht, H. J., Wongsurawat, N., Zenser, T. V. and Davis, B. (1984):Am. J. Physiol.,246, E102–107.

    CAS  PubMed  Google Scholar 

  2. Bell, R. M. (1986):Cell,5, 631–632.

    Article  Google Scholar 

  3. Bland, R., Zehnder, S. V., Ronco, P. M. and Hewison, H. (2001):Kidney Int.,60, 1277–1286.

    Article  CAS  PubMed  Google Scholar 

  4. Borgers, M. (1973):J. Histochem. Cytochem.,21, 812–818.

    CAS  PubMed  Google Scholar 

  5. Bradford, M. (1976):Anal. Biochem.,72, 248–254.

    Article  CAS  PubMed  Google Scholar 

  6. Fraser, D. R. and Kodicek, E. (1970):Nature,228, 764–766.

    Article  CAS  PubMed  Google Scholar 

  7. Ghazarian, J. G. (1990):Bone Min. Res.,5, 897–903.

    Article  CAS  Google Scholar 

  8. Gray, R. W., Omdhal, J. L., Ghazarian, J. G. and De Luca, H. F. (1972):Biol. Chem.,247, 7528–7532.

    CAS  Google Scholar 

  9. Henry, H. L. (1992):J. Cell. Biol. Chem., 49, 4–9.

    CAS  Google Scholar 

  10. Henry, H. L. and Lutano, E. M. (1989):Endocrinology,124, 2228–2234.

    Article  CAS  PubMed  Google Scholar 

  11. Hruska, K. A., Goligorsky, M., Scoble, J., Tsutsumi, M., Westbrook, S. and Moskowitz, D. (1986):Am. J. Physiol.,251, 188–198.

    Google Scholar 

  12. Igebritsen, T. S. and Cohen, P. (1983):Science,221, 331–338.

    Article  Google Scholar 

  13. Kano, J., Sugimoto, P., Fukase, M. and Chiara, K. (1994):Biochem. Biophys. Res. Commun.,199, 271–276.

    Article  CAS  PubMed  Google Scholar 

  14. Lowry, O. H., Roberts, N. R., Mei-Ling, W. V., Hixon, W. S. and Crawford, E. J. (1954):J. Biol. Chem.,207, 19–37.

    CAS  PubMed  Google Scholar 

  15. Makita, T. and Sandborn, E. B. (1970):Histochemie,24, 99–105.

    Article  CAS  PubMed  Google Scholar 

  16. Mandla, S., Boneh, A. and Tenenhouse, H. S. (1990):Endocrinology,127, 2639–2647.

    Article  CAS  PubMed  Google Scholar 

  17. Mandel, M. L., Moorthy, B. and Ghazarian, J. G. (1990):Biochem. J.,266, 385–392.

    CAS  PubMed  Google Scholar 

  18. Nemani, R., Ghazarian, J. G., Moorthy, B., Wongsurawat, N., Strong, R. and Armbrecht, H. L. (1989):J. Biol. Chem.,264, 14361–15366.

    Google Scholar 

  19. Nose, K. and Katsuta, H. (1974):Exp. Cell. Res.,87, 8–14.

    Article  CAS  PubMed  Google Scholar 

  20. Risco, F. and Traba, M. L. (1994):Magnes. Res.,7, 169–178.

    CAS  PubMed  Google Scholar 

  21. Risco, F., Babé, M. and Traba, M. L. (1987):Clin. Chem.,33, 720–721.

    CAS  PubMed  Google Scholar 

  22. Risco, F. and Traba, M. L. (1992):Magnes. Res.,5, 5–14.

    CAS  PubMed  Google Scholar 

  23. Simboli-Campbell, M., Franks, D. J. and Welsh, J. (1992):Cell Signal,4, 99–109.

    Article  CAS  PubMed  Google Scholar 

  24. Simboli-Campbell, M., Gagnon, A., Franks, D. J. and Welsh, J. (1994):J. Biol. Chem.,269, 3257–3264.

    CAS  PubMed  Google Scholar 

  25. Spencer, T. and Macrae, D. L. (1972):Enzymol.,42, 329–334.

    CAS  Google Scholar 

  26. Warner, M. (1982):J. Biol. Chem.,257, 12995–13130.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Municio, M.J., Traba, M.L. Mitochondrial alkaline phosphatase as an intracellular signal in the synthesis of 1,25(OH)2D3 and 24,25(OH)2D3 in LLC-PK1 cells. J. Physiol. Biochem. 59, 287–292 (2003). https://doi.org/10.1007/BF03179886

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179886

Key words

Palabras clave

Navigation