Advertisement

Advances in Atmospheric Sciences

, Volume 2, Issue 1, pp 45–53 | Cite as

A quantitative study on the growth law of ice crystals

  • Wang Angsheng 
  • N. Fukuta
Article

Abstract

On the basis of analysis and study of the growth of ice crystals, the inadequacy and thus a necessity for improvement of the Kobayashi-Pruppacher model are discussed. Be experimenting with a new wedgeshaped chamber of ice thermal diffusion which provides a stable environment and a wide range of control, a great amount of quantitative data from three-dimensional size measurements have been obtained. A quantitative research method is established, yielding, for the first time, satisfactory quantitative results in the region of low ice supersaturation. These results show that the Kobayashi-Pruppacher inference is inadequate, and reveal new characteristics of ice-crystal growth in the Wulff growth region, the region of abrupt change of crystal froms and that of low ice supersaturation.

Keywords

Supersaturation Water Saturation Thin Plate Atmospheric Science Copper Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bentley, W. A. & Humphreys, W. J.,Snow Crystals, Dover Publications Inc., 1931, 226.Google Scholar
  2. [2]
    Nakaya, U.,Snow Crystals, Harvard University Press, 1954, 510.Google Scholar
  3. [3]
    Weickmann, H. K. & Aufm Kampe, H. J.,J. Meteor.,6(1950), 404.Google Scholar
  4. [4]
    Auer, A. H. Jr. & Veal, D. A.,J. Atmos. Sci.,27(1970), 919–926.CrossRefGoogle Scholar
  5. [5]
    Hanajima, M.,Low Tem. Sci.,A2(1949), 23–29.Google Scholar
  6. [6]
    Nakaya, U.,Compendium of Meteorology, Amer. Met. Soc., Boston, 1951, 207.Google Scholar
  7. [7]
    Hallett, J. & Mason, B. J.,Proc. Roy. Soc.,A247(1958), 440–453.CrossRefGoogle Scholar
  8. [8]
    Kobayashi, T.,Phil. Mag.,6(1961), 1363–1370.CrossRefGoogle Scholar
  9. [9]
    Lamb, D. & Hobbs, P. V.J. Atmos. Sci.,28(1971), 1506–1509.CrossRefGoogle Scholar
  10. [10]
    Rottner, D. & Vali, G.,J. Atmos. Sci.,31(1974), 560–569.CrossRefGoogle Scholar
  11. [11]
    Fukuta, N., et al., inConf. on Cloud Physics, AMS. Nov. 15–18, 1982,Chicago, 1982, 329–332.Google Scholar
  12. [12]
    Fukuta, N.,J. Atmos. Sci.,26(1969), 522–531.CrossRefGoogle Scholar
  13. [13]
    Ryan, B. F. et al.J. Atmos. Sci.,33(1976), 842–850.CrossRefGoogle Scholar
  14. [14]
    Fukuta, N., et al., inConf. on Cloud Physics, AMS. Nov. 15–18, 1982,Chicago, 1982, 325–328.Google Scholar
  15. [15]
    Fletcher, N. H.,The Physics of Rainclouds, The Cambridge University Press, 1962, 386.Google Scholar
  16. [16]
    Hobbs, P. V.,Ice Physics, Oxford University Press, 1974, 827.Google Scholar
  17. [17]
    Rogers, R. R.,A Short Course in Cloud Physics, Pergaman Press, 1976, 227.Google Scholar
  18. [18]
    Pruppacher, H. R.,Clouds, Their Formation, Optical Properties and Effects, Academic Press, 1981, 93–186.Google Scholar
  19. [19]
    Kuroda, T. & Lacmann, R., in 8th International Conf. on Cloud Physics, France, July 15–19, 1980, 109–112.Google Scholar
  20. [20]
    Pruppacher, H. R. & Klett, J. D.,Microphysics of Clouds and Precipitation, D. Reidel, 1978, 741.Google Scholar

Copyright information

© Advances in Atmospheric Sciences 1985

Authors and Affiliations

  • Wang Angsheng 
    • 1
  • N. Fukuta
    • 2
  1. 1.Institute of Atmospheric PhysicsAcademia SinicaBeijing
  2. 2.Department of meteorologyUniversity of UtahU. S. A.

Personalised recommendations