Advertisement

Annales des Télécommunications

, Volume 59, Issue 11–12, pp 1388–1406 | Cite as

QoS multicast routing with delay constraints

  • Hieu T. Tran
  • Richard J. Harris
Article
  • 43 Downloads

Abstract

Proliferation of group-based real-time applications, such as online games and video conferencing has motivated research into QoS multicast routing. These types of applications require consideration of both source-to-destination delay (i.e., packet delay from the source to all destinations) and inter-destination delay variation (i.e., the difference in packet delay from the source to different destinations) constraints.

In this paper, we formulate a new combined problem for delay partitioning and multicast routing with source-to-destination delay and inter-destination delay variation constraints in a QoS framework, where a delay dependent cost function is associated with each network link. After identifying the problem asnp-complete, we introduce a Genetic Algorithm (ga) based algorithm that computes a source-based multicast tree which satisfies both constraints with near-optimal cost. We compare differentga schemes using different selection operators and find that the combination of Steady Statega and Remainder Stochastic Sampling selection operator works best for our problem. Simulation results also show that ourga heuristic consistently perfornis better than several other simple heuristics.

Key words

Teletraffic Network routing Point multipoint communication Quality of Service Transit time Real time Genetic algorithm Resource allocation Heuristic method 

Routage Multidestinataire Avec Qualité de Service Garantie en Matière de Délais de Transmission

Résumé

L’augmentation du nombre d’applications faisant dialoguer en temps réel des groupes d’utilisateurs, comme les jeux en ligne ou les visioconférences, est une des principales motivations de la recherche sur la qualité de service du routage multidestinataire (multicast routing). Il faut en effet maîtriser tout aussi bien le délai de transmission source-destination (c’est à dire de la source vers toutes les destinations) que la variation des délais de transmission selon les diverses destinations.

Dans cet article, on formule un nouveau problème de partionnement du délai et de routage multidestinataire prenant en compte le délai source-destination et la variation de délai selon les destinataires, où une fonction de coût dépendante du délai est associée à chaque lien du réseau. Après avoir montré que le problème étaitnp-complet, on introduit un algorithme fondé sur l’algorithme génétique pour calculer l’arbre multidestinataire qui satisfait les deux contraintes à un coût presqu’optimal. On compare ensuite plusieurs modèles d’algorithmes génétiques en utilisant différents opérateurs de sélection pour trouver le plus adapté à notre problème. C’est une combinaison de l’algorithme génétique stationnaire et de l’opérateur de sélection à échantillonnage stochastique du reste. Les résultats de simulation indiquent que notre heuristique se comporte mieux que plusieurs autres heuristiques simples.

Mots clés

Télétrafic Routage réseau Communication point multipoint Qualité service Temps parcours Temps réel Algorithme génétique Allocation ressource Méthode heuristique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kompella (V.),Pasquale (J.),Polyzos (G.), “Multicast routing for multimedia communication”, Networking,ieee/acm Transactions on,1, no 3, pp. 286–292, 1993.CrossRefGoogle Scholar
  2. [2]
    Rouskas (G. N.),Baldine (I.), “Multicast routing with end-to-end delay and delay variation constraints”,ieee Journal on Selected Areas in Communications,15, no 3, pp. 346–356, 1997.CrossRefGoogle Scholar
  3. [3]
    Parsa (M.),Zhu (Q.),Garcia-Luna-Aceves (J. J.), “An iterative algorithm for delay-constrained minimum-cost multicasting”,ieee/acm Transactions on Networking,6, no 4, pp. 461–474, 1998.CrossRefGoogle Scholar
  4. [4]
    Wang (B.)Hou (J. C.), “Multicast routing and its QoS extension: Problems, algorithms, and protocols”,ieee Network,14, no 1, pp. 22–36, 2000.CrossRefGoogle Scholar
  5. [5]
    Akyildiz (I.) Yen (W.), “Multimedia group synchronization protocols for integrated services networks”,Selected Areas in Communications, ieee Journal on,14 no 1, pp. 162–173, 1996.CrossRefGoogle Scholar
  6. [6]
    Kapoor (S.),Raghavan (S.), “Improved multicast routing with delay and delay variation constraints”, inGlobal Telecommunications Conference, 2000, Globecom’00.ieee,1, pp. 476–489, 2000.Google Scholar
  7. [7]
    Sheu (P.-R.)Chen (S.-T.), “A fast and efficient heuristic algorithm for the delay and delay variation bound multicast tree problem”, inInformation Networking, 2001. Proceedings. 15th International Conference on, pp. 611–618, 2001.Google Scholar
  8. [8]
    Low (C. P.)Lee (Y. J.), “Distributed multicast routing, with end-to-end delay and delay variation constraints”,Computer Communications,24, no 9, pp. 848–862, 2000.CrossRefGoogle Scholar
  9. [9]
    Lorenz (D. H.),Orda (A.), “Optimal partition of qos requirements on unicast paths and multicast trees”,ieee/acm Transactions on Networking,10, pp. 102–114, 2002.CrossRefGoogle Scholar
  10. [10]
    Waxman (B.), “Routing of multipoint connections”,Selected Areas in Communications, ieee Journal on,6, no 9, pp. 1617–1622, 1988.CrossRefGoogle Scholar
  11. [11]
    Doar (M.),Leslie (I.), “How bad is naive niulticast routing?”, ininfocom’93. Proceedings. Twelfth Annual Joint Conference of the ieee Computer and Communications Societies. Networking: Foundation for the Future.ieee Comput. Lab., Cambridge Univ., UK Comput. Lab., Cambridge Univ., UK: Theoretical or Mathematical,1, pp. 82–89 1993.Google Scholar
  12. [12]
    Lin (H. C.),Lai (S.-C.), “A dynamic multicast routing algorithm”, ininfocom’98. Seventeenth Annual Joint Conference of the ieee Computer and Communications Societies. Proceedings ieee,3, Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan: Theoretical or Mathematical,3, pp. 1426–1432, 1998.CrossRefGoogle Scholar
  13. [13]
    Wang (K.),Chen (J.-H.), “An efficient probabilistic dynamic multicast routing inatm networks”,Journal of Information Science and Engineering15, pp. 485–504, 1999.Google Scholar
  14. [14]
    Subramanian (N.), S.Lin, “Centralized multipoint routing in wide area networks”, inSymposium on Applied Computing, pp. 46–52, 1991.Google Scholar
  15. [15]
    Hnang (N.-F.),Chen (K.-S.),Chao (H.-C.),Pan (J.-Y.), “A distributed multicast tree migration scheme foratm based personal communication networks”, inGlobal Telecommunications Conference, 1996. globecom’96. “Communications: The Key to Global Prosperity,2. Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan: Theoretical or Mathematical, pp. 1054–1058, 1996.CrossRefGoogle Scholar
  16. [16]
    Baner (F.),Varma (A.), “Aries: a rearrangeable inexpensive edge-based on-line Stener algorithm”,Selected Areas in Communications, ieee Journal on,15, no 3, pp. 382–397, 1997.CrossRefGoogle Scholar
  17. [17]
    Chakrabarti (A.),Manimaran (C.), “A case for scalable multicast tree migration”, inGlobal Telecommunications Conference, 2001. globecom’01. ieee, Iowa State University,3, pp. 2026–2030, 2001.Google Scholar
  18. [18]
    Chakrabarti (A.),Striegel (A.),Manimaran (C.), “A case for tree evolution in QoS multicasting”, inQuality of Service, 2002. Tenth ieee International Workshop on, Iowa State University, pp. 116–125, 2002.Google Scholar
  19. [19]
    Lorenz (D. H.),Orda (A.), “QoS routing in networks with uncertain parameters”,ieee/acm Transactions on Networking,6 pp. 768–778, 1998.CrossRefGoogle Scholar
  20. [20]
    Tran (H. T.),Harris (R. J.), “Near-optimal allocation of delay requirements on multicast trees”, inifip Interworking 2002 — Converged Networking: Data and Real-time overip. Perth, Western Australia: Kluwer Academic Publishers, pp. 325–339, 2002.Google Scholar
  21. [21]
    Atov (I.),Tran (H. T.),Harris (R. J), “Efficient QoS partition and routing in multiserviceip networks”, inipccc 2003, A. D. George, E. Johnson, G. C. R. III, and G. Xue, Eds. Phoenix, Arizona,usa, pp. 435–441, 2003.Google Scholar
  22. [22]
    Kou (L.),Markowsky (C.),Berman (L.), “A fast algorithm for Steiner trees”,Acta Informatica,15, no 141–145, 1981.Google Scholar
  23. [23]
    Haberman (B. K.),Rouskas (C. N.), “Cost, delay, and delay variation conscious multicast routing”,nc State University, Tech. Rep., 1997.Google Scholar
  24. [24]
    Carey (M. R.),Johnson (D. S.),Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: W. H. Freeman and Company, 1979.Google Scholar
  25. [25]
    Reeves (C. R.), Ed.Modern heuristic techniques for combinatorial problems, ser. Advanced topics in computer science, London: McGraw-Hill, 1995. science. London: McCraw-Hill, 1995.Google Scholar
  26. [26]
    Sun (Q.),Langendorfer (H.), “Computation of constrained multicast trees using a genetic algorithm”,European Transactions on Telecommunications,10, no 5, pp. 513–516, 1999.CrossRefGoogle Scholar
  27. [27]
    Gelenbe (E.), “Genetic algorithms for route discovery”, inspect’03, Montreal, Canada, 2003.Google Scholar
  28. [28]
    Gelenbe (E.),Chanwani (A.),Srinivasan (V.), “Improved neural heuristics for multicast routing”,Selected Areas in Communications, ieee Journal on,15, no 2, pp. 147–155, 1997.CrossRefGoogle Scholar
  29. [29]
    Gelenbe (E.), “Random neural networks with positive and negative signals and product form solution”,Neural Computation,1, no 4, pp. 502–510, 1989.CrossRefGoogle Scholar
  30. [30]
    Gelenbe (E.), “Stable random neural networks”,Neural Computation,2, no 2, pp. 239–247, 1990.CrossRefGoogle Scholar
  31. [31]
    Rayward-Smith (V. J.), “The computation of nearly minimal Steiner trees in graphs”,International Journal of Mathematics and Educational Science and Technology,14, no 1, pp. 15–23, 1983.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Goldberg (D. E.),Genetic Algorithms in Search, Optimization, and Machine Learning. Massachusetts: Addison Wesley, 1989.MATHGoogle Scholar
  33. [33]
    Palmer (C. C.),Kershenbaum (A.), “Representing trees in genetic algorithms”, inthe First ieee Conference on Evolutionary Computation,1, pp. 379–384, 1994.CrossRefGoogle Scholar
  34. [34]
    Caube (T.),Rothlauf (F.), “the link and node biased encoding revisited: Bias and adjustment of parameters”, University of Illinois, Tech. Rep. 2001011, 2001.Google Scholar
  35. [35]
    Wall (M.), “Galib: a c++ Library of genetic algorithm components”,mit, 1995–1999.Google Scholar
  36. [36]
    Q. N. L. B. University, “Brite: Boston university representative internet topology generator”, 2001.Google Scholar
  37. [37]
    Tran (H. T.),Harris (R. J.), “An efficient distributed algorithm for delay constrained multicast routing” instnac 2003, Melbourne, 2003.Google Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 2004

Authors and Affiliations

  1. 1.RMIT UniversityMelbourneAustralia
  2. 2.MelbourneAustralia

Personalised recommendations