Annales des Télécommunications

, Volume 59, Issue 9–10, pp 1012–1030 | Cite as

FDTD simulations and measurements for cell phone with planar antennas

  • Claudio R. Fernández
  • Mateus Bonadiman
  • Alvaro A. A. De Salles


The Finite-Difference Time-Domain (fdtd) method is used to calculate the cellular phone far and near field and the specific absorption rate (sar) in the user’s head. The conventional λ/4 monopole and a simple planar antenna are simulated and measured. The simulated results are in good agreement with those measured for thevswr and for the radiation patterns on the horizontal and vertical planes. These results show that significant improvements in the antenna radiation efficiency and in the reduction of thesar in the head are obtained when planar antennas are used.

Key words

Electromagnetic field Finite difference method Time domain method Portable telephone set Mobile service radiocommunication Monopole antenna Absorbed radiation dose Radiation effect Radiation pattern Wave absorption 

Simulations et Mesures avec la Méthode FDTD pour les Téléphones Cellulaires avec Antennes Planaires


On utilise la méthode des différences finies dans le domaine temporel (fdtd) pour calculer les champs proche et lointain émis par un téléphone cellulaire, et le débit d’absorption spécifique (das) dans la tête de l’utilisateur. On simule et on mesure l’antenne unipolaire classique en λ/4 et une simple antenne planaire. Les résultats simulés concordent avec les résultats mesurés du rapport d’onde stationnaire (ros) et des diagrammes de rayonnement dans le plan horizontal et dans le plan vertical. Ces résultats montrent qu’en utilisant des antennes planaires, on améliore significativement l’efficacité de rayonnement de l’antenne et la réduction dusar dans la tête.

Mots clés

Champ électromagnétique Méthode différence finie Méthode domaine temps Poste téléphonique portatif Radiocommunication service mobile Antenne unipolaire Antenne plaque Dose rayonnement absorbée Effet rayonnement Diagramme rayonnement Absorption onde 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jensen (M. A.),Rahmat-Samii (Y.), “em Interaction of Handset Antennas and a Human in Personal Communications”,Proc. of the ieee,83, no 1, pp. 7–17, January 1995.CrossRefGoogle Scholar
  2. [2]
    De Salles (A. A.),Fernández (C. R.),Bonadiman (M.), “Far Field, Near Field andsar Simulation for Cell Phones Operating Close to the Head”ieee — comsoc International Telecommunications Symposium (its2002), Natal —rn, September 2002.Google Scholar
  3. [3]
    Rowley (J. T.),Waterhouse (R. B.), “Performance of Shorted Microstrip Patch Antennas for Mobile Communications Handsets at 1800 MHz”,ieee Trans. Antennas Propagat.,47, no 5, pp. 815–822, May 1999.CrossRefGoogle Scholar
  4. [4]
    Deal (W. R.),Qian (Y.),Itoh (T.), “Planar Integrated Antenna Technology”,Microwave Journal, pp. 128–144, July 1999.Google Scholar
  5. [5]
    Sanad (M.),Amant (N. H.), “An Internal Integrated Microstrip Antenna forpcs/Cellular Telephones and other Hand-held Portable Communication Equipment”,Microwave Journal, pp.64–77, July 1998.Google Scholar
  6. [6]
    Centro Nacional de Supercomputação -cesup/rs. Available from World Wide Web: http://www.cesup.ufrgs.brGoogle Scholar
  7. [7]
    Taflove (A.),Computational Electrodynamics- the Finite Diference Time Domain Method, Artech House 1995,isbn 0-89006-792-9Google Scholar
  8. [8]
    Bérenger (J. P.), “A perfect matched Layer for Absorption of Electromagnetic Waves”,Journal of Computational Physics,114, pp.185–200, 1994.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Mur (G.), “Absorbing Boundary condition for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations”ieee Trans. Electromagnetic Compatibility,23, pp. 377–382, November 1981.CrossRefGoogle Scholar
  10. [10]
    Garg (R.),Bhartia (P.),Bahl (I.),Ittipiboon (A.),Microstrip Antenna Design Handbook. Artech House 2001,isbn 0-89006-513-6Google Scholar
  11. [11]
    Balanis (C. A.),Antenna Theory: Analysis and Design. John Wiley & Sons, 1997,isbn 0-471-59268-4, ch.14.Google Scholar
  12. [12]
    Bhartia (P.),Rao (K. V. S.),Tomar (R. S.),Millimeter-Wave Microstrip and Printed Circuit Antennas. Artech House 1991, ISBN 0-89006-333-8Google Scholar
  13. [13]
    James (J. R.),Hall (P. S.),Wood (C.),Microstrip Antenna Theory and Design. Peter Peregrinus 1981,isbn 0-906048-57-5Google Scholar
  14. [14]
    rt DuroidTM datasheet Available from World Wide Web: Scholar
  15. [15]
    Ansoft Designer. Available from World Wide Web: http://www.ansoft.comGoogle Scholar
  16. [16]
    De Salles (A. A.),Fernández (C.),Bonadiman (M.), “Simulação do Campo Distante e da SAR na Cabeça do Usuário do Telefone Celular para Antenas Convencionais e Planares”X Simpósio Brasileiro de Microondas e Optoeletrônica, Recife —pe, Agosto 2002.Google Scholar
  17. [17]
    Watanabe (S.)Taki (M.),Nojima (T.),Fujiwara (O.), “Characteristics of thesar Distributions in a Head Exposed to Electromagnetic Fields Radiated by a Hand-Held Portable Radio”,ieee Trans Microwaves Theory Techniques,44, no. 10, pp. 1874–1883, October 1996.CrossRefGoogle Scholar
  18. [18]
    Iskander (M. F.)Yun (Z.),Quintero-iwera (R.), “Polarization and Human Body Effects on the Microwave Absorption in a Human Head Exposed to Radiation from Hand Held Devices”,ieee t-mtt,48, no. 11, pp. 1979–1987, November 2000.CrossRefGoogle Scholar
  19. [19]
    Bernardi (P.)Cavagnaro (M.),Pisa (S.),Piuzzi (E.), “Power Absorption and Temperature Elevation Induced in the Human Head by a Dual-Band Monopole-Helix Antenna Phone”,ieee t-mtt,49, no. 12, pp. 2539–2546, December 2001.CrossRefGoogle Scholar
  20. [20]
    Federal Communications Commission: Tissue Dielectric Properties Available from World Wide Web: Scholar
  21. [21]
    icnirp Guidelines, “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 GHz), International Commission on Non-Ionizing Radiation Protection”,Health Physics,74, no. 4, pp. 494–522, April 1998.Google Scholar
  22. [22]
    anatel, Regulamento sobre Limitação da Exposição a Campos Elétricos, Magnéticos e Eletromagnéticos na faixa de Radiofreqüências entre 9 kHz e 300 GHz, anexo à Resolução no 303 de 2 de Julho de 2002.Google Scholar
  23. [23]
    National Library of Medicine — Center for Biomedical Informatics, Unicamp: The Visible Human ProjectTM — South America Mirror. Available from World Wide Web: 〈〉.Google Scholar
  24. [24]
    Okoniewski (M.),Okoniewska (E.),Stuchly (M. A.) “Three-Dimensional Subgridding Algorithm forfdtdieee Trans. Antennas Propagat.,45, no. 3, pp. 422–429, March 1997.CrossRefGoogle Scholar
  25. [25]
    White (M. J.),Yun (Z.),Iskander (M. F.), “A New 3-d fdtd Multigrid Technique with Dielectric Transverse Capabilities”,IEEE Trans. Microwave Theory and Techniques.,49, no. 3, pp. 422–430, March 2001.CrossRefGoogle Scholar
  26. [26]
    Lazzi (G.),Furse (C. M.),Gandhi (O. P.), “Optimization and Design Conductivity Profiles for thepml Boundary Condition and Its Application to Bioelectromagnetic Problems”,ieee — aps International Symposium — 1997 Digest,1, pp. 486–489,isbn 0-7803-4178-3, Montreal — Canada, 13–18 July 1997.Google Scholar
  27. [27]
    Menezes (L. R. A. X.),Hoefer (W. J. R.), “Accuracy oftlm Solutions of Maxwell’s Equations”,ieee Trans. Microwave Theory and Techniques.,44, no. 12, pp. 2512–2518, December 1996.CrossRefGoogle Scholar
  28. [28]
    Schneider (J. B.),Kruhlak (R. J.), “Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid”,ieee Trans. Microwave Theory and Techniques.,49, no. 2, pp. 280–287, February 2001.CrossRefGoogle Scholar
  29. [29]
    Nehrbass (J. W.),Jevtic (J. O.),Lee (R.), “Reducing the Phase Error for Finite-Difference Methods Without Increasing the Order”,ieee Trans. Antennas Propagat.,46, no 8, pp. 1194–1201, August 1998.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Chung (Y-S.),Sarkar (T. K.),Jung (B. H.),Salazar-Palma (M.), “An Unconditionally Stable Scheme for the Finite-Difference Time-Domain Method”ieee Trans. Microwave Theory and Techniques.,51, no. 3, pp. 697–704, March 2003.CrossRefGoogle Scholar
  31. [31]
    Teixeira (F. L.),Hwang (K-P.),Chew (C. W.),Jin (J-M.), “Conformalpml-fdtd Schemes for Electromagnetic field simulations: A Dynamic Stability Study”ieee Trans. Antennas Propagat.,49, no 6, pp. 902–907, June 2001.CrossRefGoogle Scholar
  32. [32]
    Dridi (K. H.),Hesthaven (J. S.),Ditkowski (A.), “Staircase-Free Finite-Difference Time-Domain Formulation for General Materials in Complex Geometries”ieee Trans. Antennas Propagat.,49, no 5, pp. 749–756, May 2000.CrossRefMathSciNetGoogle Scholar
  33. [33]
    Holma (H.),Toskala (A.),wcdma forumts: Radio Access for Third Generation Mobile Communications.John Wiley & Sons, 2001,isbn 0-471486-87-6, ch. 8.Google Scholar
  34. [34]
    Nielsen (J.)Pedersen (G. F.),Olesen (K.),Kovacs (I. Z.), “Statistics of Measured Body Loss for Mobile Phones”,ieee Trans. Antennas Propagat.,49, no. 9, pp. 1351–1353, September 2001.CrossRefGoogle Scholar
  35. [35]
    Neves (E. S.),Lacava (J. C.),Cividanes (L.), “Dual band Rectangular Patch Antenna with Two Pairs of Parallel Slits”,ieee — aps International Symposium onap (APS2002),2, pp. 52–55.Google Scholar
  36. [36]
    Garg (R.),Reddy (V. S.), “A Broad-Band Coupled-Strips Microstrip Antenna”,ieee Trans. Antennas Propagat.,49, no. 9, pp. 1344–1345, September 2001.MATHCrossRefGoogle Scholar

Copyright information

© Institut Telecom / Springer-Verlag France 2004

Authors and Affiliations

  • Claudio R. Fernández
    • 1
  • Mateus Bonadiman
    • 2
  • Alvaro A. A. De Salles
    • 1
  1. 1.Electrical Engineering Department, Optoelectronic Communications LaboratoryFederal University of Rio Grande do Sul (UFRGS)Porto AlegreBrasil
  2. 2.the Electrical Engineering DepartmentAeronautical Technologic Institute (ITA)São José dos Campos, SPBrasil

Personalised recommendations