Skip to main content
Log in

FDTD simulations and measurements for cell phone with planar antennas

Simulations et Mesures avec la Méthode FDTD pour les Téléphones Cellulaires avec Antennes Planaires

  • Published:
Annales des Télécommunications Aims and scope Submit manuscript

Abstract

The Finite-Difference Time-Domain (fdtd) method is used to calculate the cellular phone far and near field and the specific absorption rate (sar) in the user’s head. The conventional λ/4 monopole and a simple planar antenna are simulated and measured. The simulated results are in good agreement with those measured for thevswr and for the radiation patterns on the horizontal and vertical planes. These results show that significant improvements in the antenna radiation efficiency and in the reduction of thesar in the head are obtained when planar antennas are used.

Résumé

On utilise la méthode des différences finies dans le domaine temporel (fdtd) pour calculer les champs proche et lointain émis par un téléphone cellulaire, et le débit d’absorption spécifique (das) dans la tête de l’utilisateur. On simule et on mesure l’antenne unipolaire classique en λ/4 et une simple antenne planaire. Les résultats simulés concordent avec les résultats mesurés du rapport d’onde stationnaire (ros) et des diagrammes de rayonnement dans le plan horizontal et dans le plan vertical. Ces résultats montrent qu’en utilisant des antennes planaires, on améliore significativement l’efficacité de rayonnement de l’antenne et la réduction dusar dans la tête.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jensen (M. A.),Rahmat-Samii (Y.), “em Interaction of Handset Antennas and a Human in Personal Communications”,Proc. of the ieee,83, no 1, pp. 7–17, January 1995.

    Article  Google Scholar 

  2. De Salles (A. A.),Fernández (C. R.),Bonadiman (M.), “Far Field, Near Field andsar Simulation for Cell Phones Operating Close to the Head”ieee — comsoc International Telecommunications Symposium (its2002), Natal —rn, September 2002.

  3. Rowley (J. T.),Waterhouse (R. B.), “Performance of Shorted Microstrip Patch Antennas for Mobile Communications Handsets at 1800 MHz”,ieee Trans. Antennas Propagat.,47, no 5, pp. 815–822, May 1999.

    Article  Google Scholar 

  4. Deal (W. R.),Qian (Y.),Itoh (T.), “Planar Integrated Antenna Technology”,Microwave Journal, pp. 128–144, July 1999.

  5. Sanad (M.),Amant (N. H.), “An Internal Integrated Microstrip Antenna forpcs/Cellular Telephones and other Hand-held Portable Communication Equipment”,Microwave Journal, pp.64–77, July 1998.

  6. Centro Nacional de Supercomputação -cesup/rs. Available from World Wide Web: http://www.cesup.ufrgs.br

  7. Taflove (A.),Computational Electrodynamics- the Finite Diference Time Domain Method, Artech House 1995,isbn 0-89006-792-9

  8. Bérenger (J. P.), “A perfect matched Layer for Absorption of Electromagnetic Waves”,Journal of Computational Physics,114, pp.185–200, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  9. Mur (G.), “Absorbing Boundary condition for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations”ieee Trans. Electromagnetic Compatibility,23, pp. 377–382, November 1981.

    Article  Google Scholar 

  10. Garg (R.),Bhartia (P.),Bahl (I.),Ittipiboon (A.),Microstrip Antenna Design Handbook. Artech House 2001,isbn 0-89006-513-6

  11. Balanis (C. A.),Antenna Theory: Analysis and Design. John Wiley & Sons, 1997,isbn 0-471-59268-4, ch.14.

  12. Bhartia (P.),Rao (K. V. S.),Tomar (R. S.),Millimeter-Wave Microstrip and Printed Circuit Antennas. Artech House 1991, ISBN 0-89006-333-8

  13. James (J. R.),Hall (P. S.),Wood (C.),Microstrip Antenna Theory and Design. Peter Peregrinus 1981,isbn 0-906048-57-5

  14. rt DuroidTM datasheet Available from World Wide Web: http://www.rogerscorporation.com/acm/index.htm

  15. Ansoft Designer. Available from World Wide Web: http://www.ansoft.com

  16. De Salles (A. A.),Fernández (C.),Bonadiman (M.), “Simulação do Campo Distante e da SAR na Cabeça do Usuário do Telefone Celular para Antenas Convencionais e Planares”X Simpósio Brasileiro de Microondas e Optoeletrônica, Recife —pe, Agosto 2002.

  17. Watanabe (S.)Taki (M.),Nojima (T.),Fujiwara (O.), “Characteristics of thesar Distributions in a Head Exposed to Electromagnetic Fields Radiated by a Hand-Held Portable Radio”,ieee Trans Microwaves Theory Techniques,44, no. 10, pp. 1874–1883, October 1996.

    Article  Google Scholar 

  18. Iskander (M. F.)Yun (Z.),Quintero-iwera (R.), “Polarization and Human Body Effects on the Microwave Absorption in a Human Head Exposed to Radiation from Hand Held Devices”,ieee t-mtt,48, no. 11, pp. 1979–1987, November 2000.

    Article  Google Scholar 

  19. Bernardi (P.)Cavagnaro (M.),Pisa (S.),Piuzzi (E.), “Power Absorption and Temperature Elevation Induced in the Human Head by a Dual-Band Monopole-Helix Antenna Phone”,ieee t-mtt,49, no. 12, pp. 2539–2546, December 2001.

    Article  Google Scholar 

  20. Federal Communications Commission: Tissue Dielectric Properties Available from World Wide Web: http://www.fcc.gov/fcc-bin/dielec.sh

  21. icnirp Guidelines, “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields (Up to 300 GHz), International Commission on Non-Ionizing Radiation Protection”,Health Physics,74, no. 4, pp. 494–522, April 1998.

  22. anatel, Regulamento sobre Limitação da Exposição a Campos Elétricos, Magnéticos e Eletromagnéticos na faixa de Radiofreqüências entre 9 kHz e 300 GHz, anexo à Resolução no 303 de 2 de Julho de 2002.

  23. National Library of Medicine — Center for Biomedical Informatics, Unicamp: The Visible Human ProjectTM — South America Mirror. Available from World Wide Web: 〈http://www.vhd.org.br〉.

  24. Okoniewski (M.),Okoniewska (E.),Stuchly (M. A.) “Three-Dimensional Subgridding Algorithm forfdtdieee Trans. Antennas Propagat.,45, no. 3, pp. 422–429, March 1997.

    Article  Google Scholar 

  25. White (M. J.),Yun (Z.),Iskander (M. F.), “A New 3-d fdtd Multigrid Technique with Dielectric Transverse Capabilities”,IEEE Trans. Microwave Theory and Techniques.,49, no. 3, pp. 422–430, March 2001.

    Article  Google Scholar 

  26. Lazzi (G.),Furse (C. M.),Gandhi (O. P.), “Optimization and Design Conductivity Profiles for thepml Boundary Condition and Its Application to Bioelectromagnetic Problems”,ieee — aps International Symposium — 1997 Digest,1, pp. 486–489,isbn 0-7803-4178-3, Montreal — Canada, 13–18 July 1997.

  27. Menezes (L. R. A. X.),Hoefer (W. J. R.), “Accuracy oftlm Solutions of Maxwell’s Equations”,ieee Trans. Microwave Theory and Techniques.,44, no. 12, pp. 2512–2518, December 1996.

    Article  Google Scholar 

  28. Schneider (J. B.),Kruhlak (R. J.), “Dispersion of Homogeneous and Inhomogeneous Waves in the Yee Finite-Difference Time-Domain Grid”,ieee Trans. Microwave Theory and Techniques.,49, no. 2, pp. 280–287, February 2001.

    Article  Google Scholar 

  29. Nehrbass (J. W.),Jevtic (J. O.),Lee (R.), “Reducing the Phase Error for Finite-Difference Methods Without Increasing the Order”,ieee Trans. Antennas Propagat.,46, no 8, pp. 1194–1201, August 1998.

    Article  MATH  MathSciNet  Google Scholar 

  30. Chung (Y-S.),Sarkar (T. K.),Jung (B. H.),Salazar-Palma (M.), “An Unconditionally Stable Scheme for the Finite-Difference Time-Domain Method”ieee Trans. Microwave Theory and Techniques.,51, no. 3, pp. 697–704, March 2003.

    Article  Google Scholar 

  31. Teixeira (F. L.),Hwang (K-P.),Chew (C. W.),Jin (J-M.), “Conformalpml-fdtd Schemes for Electromagnetic field simulations: A Dynamic Stability Study”ieee Trans. Antennas Propagat.,49, no 6, pp. 902–907, June 2001.

    Article  Google Scholar 

  32. Dridi (K. H.),Hesthaven (J. S.),Ditkowski (A.), “Staircase-Free Finite-Difference Time-Domain Formulation for General Materials in Complex Geometries”ieee Trans. Antennas Propagat.,49, no 5, pp. 749–756, May 2000.

    Article  MathSciNet  Google Scholar 

  33. Holma (H.),Toskala (A.),wcdma forumts: Radio Access for Third Generation Mobile Communications.John Wiley & Sons, 2001,isbn 0-471486-87-6, ch. 8.

  34. Nielsen (J.)Pedersen (G. F.),Olesen (K.),Kovacs (I. Z.), “Statistics of Measured Body Loss for Mobile Phones”,ieee Trans. Antennas Propagat.,49, no. 9, pp. 1351–1353, September 2001.

    Article  Google Scholar 

  35. Neves (E. S.),Lacava (J. C.),Cividanes (L.), “Dual band Rectangular Patch Antenna with Two Pairs of Parallel Slits”,ieee — aps International Symposium onap (APS2002),2, pp. 52–55.

  36. Garg (R.),Reddy (V. S.), “A Broad-Band Coupled-Strips Microstrip Antenna”,ieee Trans. Antennas Propagat.,49, no. 9, pp. 1344–1345, September 2001.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio R. Fernández.

Additional information

was with the E.E.Dept.ufrgs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, C.R., Bonadiman, M. & De Salles, A.A.A. FDTD simulations and measurements for cell phone with planar antennas. Ann. Télécommun. 59, 1012–1030 (2004). https://doi.org/10.1007/BF03179708

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179708

Key words

Mots clés

Navigation