Advertisement

Annals of Microbiology

, Volume 58, Issue 1, pp 53–59 | Cite as

Influence of culture conditions on esterase activity of five psychrotrophic Gram negative strains selected from raw Tunisian milk

  • Olfa Ben Moussa
  • Melika Mankaï
  • Chokry Barbana
  • Mnasser Hassouna
  • Nuno Bartolomeu Alvarenga
  • João Canada
Food Microbiology Original Articles

Abstract

The contamination of milk by spoilage bacteria is undesirable, particularly when Gram negative bacteria which produce thermo-resistant protease and lipase can grow. In this work, spoilage bacteria in refrigerated raw milk were identified, using API 20NE System. Five dominant species were found:Pseudomonas fluorescens (20%),Aeromonas hydrophila (16%),Pseudomonas cepacia (13%),Pseudomonas putida (6%) andChryseomonas luteola (5%). On the basis of agar diffusion assays, five strains harbouring the strongest lipases activities were selected. It has been found that esterase activities are higher for each one. Effects of main environmental and nutritional factors on the esterase activity of those psychrotrophic strains were investigated. Biomass level, pH, lactose concentration and permanent agitation affected positively esterase activity of each strain. However, the addition of Tween 20 influenced it negatively. Finally, and in order to extract information from the data sets, principal components analysis was applied to the data sets. The first two principal components showed a clear discrimination betweenPseudomonas fluorescens andPseudomonas cepacia.

Key words

raw milk Gram negative bacteria esterasic activity optimisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aaku E.N., Collison E.K., Gashe B.A., Mpuchane S. (2004). Microbiological quality of milk from two processing plants in Gaborone Botswana. Food Control, 15: 181–186.CrossRefGoogle Scholar
  2. Allen J.C. (1994). Rancidity in dairy products. In: Allen J.C., Hamilton R.J., Eds, Rancidity in Foods, 3rd edn., Blackie Academic and Professionnal, London, pp. 179–762.Google Scholar
  3. Al-Saleh A.A., Zahran A.S. (1999). Synthesis of extracellular lipase by a strain ofPseudomonas fluorescens isolated from raw camel milk. Food Microbiology, 16: 149–156.CrossRefGoogle Scholar
  4. Braun P., Fehlhaber K., Klug C., Kopp K. (1999). Investigations into the activity of enzymes produced by spoilage-causing bacteria: a possible basis for improved shelf-life estimation. Food Microbiology, 16: 531–540.CrossRefGoogle Scholar
  5. Buchon L., Laurent P., Gounot A.M., Guespin-Michel J.F. (2000). Temperature dependence of extracellular enzymes production by psychrotrophic and psychrophilic bacteria. Biotech. Lett., 22: 1577–1581.CrossRefGoogle Scholar
  6. Deeth H.C. (2002). Lipolysis. In: Roginsky H., Fuquay J.W., Fox P.F., Eds, Encyclopedia of Dairy Sciences, vol. 1, Academic Press, New York, pp. 1595–1601.Google Scholar
  7. De Meo M., Larget M., Phan-Than-Luu R., Mathieu D., Duménil G. (1985). Application des plans d’expériences à l’optimisation des milieux et des conditions de cultures en fermentation. Rev. Biol. Sci., 4: 45–49.Google Scholar
  8. Dogan B., Boor K.J. (2003). Genetic diversity and spoilage potentials amongPseudomonas spp. Isolated from fluid milk products and dairy processing plants. Appl. Environ. Microbiol., 69: 130–138.CrossRefPubMedGoogle Scholar
  9. Dousset X., Pinet X., Guillaumin B., Janvier P. (1986). Evolution de la qualité bactériologique du lait au cours de la collecte, Lait, 66: 75–87.Google Scholar
  10. Dousset X., Demaimay M., Ravaud C., Levesque A., Pinet X., Kergo Y. (1988). Influence de la température de réfrigération du lait sur la protéolyse et l’amertume du lait UHT au cours de son stockage. Lait, 68: 143–156.CrossRefGoogle Scholar
  11. Dupuis C., Boyaval P. (1993). Esterase activity of dairyPropionibacterium. Lait, 73: 345–356.CrossRefGoogle Scholar
  12. Fairbairn D.J., Law B.A. (1986). Proteinases of psychrotrophic bacteria. Their origin, production, properties, effects and control. J. Dairy Res., 53: 139–177.CrossRefPubMedGoogle Scholar
  13. Frank J.F. (1997). Milk and dairy products. In: Doyle M.P., Beuchat L.R., Montville T.J., Ed., Food Microbiology, Fundamentals and Frontiers, American Society of Microbiology, Washington, D.C., pp. 101–116, 581–594.Google Scholar
  14. Griffiths M.W. (1989). Effect of temperature and milk fat on extracellular enzyme synthesis by psychrotrophic bacteria during growth in milk. Milchwissenschaft, 44: 537–604.Google Scholar
  15. Gügi B., Orange N., Hellio F., Burini J. F., Guillou C., Leriche F., Guespin-Michel J.F. (1991). Effect of growth temperature on several exported enzyme activities in the psychrotrophic bacteriumPseudomonas fluorescens. J. Bacteriol., 12: 3814–3820.Google Scholar
  16. Guiraud J.P. (1998). Microbiologie Alimentaire. Dunod, Paris.Google Scholar
  17. Ji-Heui K., Gi-Sub C., Seung-Bum K, Won-Ho K., Jin-Young L., Yeon-Woo R., Geun-Joong K. (2004). Enhanced thermostability and tolerance of high substrate concentration of an esterase by directed evolution. J. Mol. Catal., 27: 169–175.CrossRefGoogle Scholar
  18. Laurent P., Buchon L., Guespin-Michel J., Orange N. (2000). Production of pectate lyases and cellulases byChryseomonas luteola MFCL0 depends on growth temperature and the nature of the culture medium: evidence for two critical temperatures. Appl. Environ. Microbiol., 66: 1538–1543.CrossRefPubMedGoogle Scholar
  19. Malik R.K., Prasad R., Mathur D.K. (1985). Effect of some nutritional and environmental factors on extracellular protease production byPseudomonas SP. B25. Lait, 65: 169–183.CrossRefGoogle Scholar
  20. Mankaï M., Ben Moussa O., Hassouna M. (2005). Influence des conditions de culture sur l’activité protéolytique extracellulaire de souches psychrotrophes isolées à partir de lait cru tunisien réfrigéré — Leur caractérisation enzymatique par le système API ZYM. Ind. Alim. Agric., 122 (4): 7–13.Google Scholar
  21. MC Phee J.D., Griffiths M.W. (2002). Psychrotrophic bacteria,Pseudomonas spp. In: Roginsky H., Fuquay J.W., Fox P.F., Eds, Encyclopedia of Dairy Sciences, Vol. 4, Academic Press, New York, pp. 2340–2351.Google Scholar
  22. Miranda G., Gripon J.C. (1986). Origine, nature et incidences technologiques de la protéolyse dans le lait. Lait, 66: 1–18.CrossRefGoogle Scholar
  23. Rahman R.N.Z.R.A., Geok L.P., Basri M., Salleh A.B. (2005). An organic solvent-tolerant fromPseudomonas aeruginosa strain K. Nutritional factors affecting protease production. Enzyme Microb. Tech., 36: 749–757.CrossRefGoogle Scholar
  24. Richard J. (1983). Nature de la flore microbienne dominante et sous-dominante des laits crus très pollués. Lait, 63, 148–167.CrossRefGoogle Scholar
  25. Shah N.P. (1994). Psychrotrophs in milk. Milchwissenschaft, 49: 432–437.Google Scholar
  26. Ternström A., Lindberg A.M., Molin G. (1993). Classification of the spoilage flora of raw and pasteurized bovine milk, with special reference toPseudomonas andBacillus. J. Appl. Bacteriol., 75: 25–34.PubMedGoogle Scholar
  27. Tombs M.P. (1995). Enzymes in the processing of fats and oils. In: Tucker G.A., Woods L.F.J., Eds, Enzymes in Food Processing, 2nd edn., Blackie Academic and Professionnal, London, pp. 268–281.Google Scholar
  28. Tortora G.J., Funke B.R., Case C.L. (2003). Le métabolisme microbien. In: Tortora G.J., Funke B.R., Case C.L., Eds, Introduction à la Microbiologie, 7th edn., Renouveau Pédagogiques Inc. Edition, Canada, pp. 124–168.Google Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Olfa Ben Moussa
    • 1
  • Melika Mankaï
    • 1
  • Chokry Barbana
    • 1
  • Mnasser Hassouna
    • 1
  • Nuno Bartolomeu Alvarenga
    • 2
  • João Canada
    • 2
  1. 1.Unité de Recherche «Sciences et Technologies des Aliments»École Supérieure des Industries Alimentaires de Tunis (ESIAT)TunisTunisia
  2. 2.Départment des Sciences et Technologies Alimentaires «ADCTA» École Supérieure Agronomique (ESAB)BejaPortugal

Personalised recommendations