Advertisement

Metals and Materials International

, Volume 7, Issue 6, pp 551–556 | Cite as

The ordering behavior of supersaturated metastable phases in β-Ti alloys

  • Byung-Hak Choe
  • Baek-Hee Lee
  • Je-Hyun Lee
  • Tae-Ho Lee
  • Chang Gil Lee
  • Sung-Joon Kim
  • Yong-Tai Lee
Article

Abstract

A phase resulting from quenching solution treated beta-Ti alloys has long been recognized as a metastable structure containing unusual phenomena, and is not well understood. Tweed structure consisting of the metastable phase was observed by transmission electron microscopy, and spot satellites inflicted by streaks were also observed in the lattice diffraction. The results of microstructural studies and diffraction pattern surveys have identified the metastable structure as the elastic strain zone caused by the supersaturation of solute atoms, which may be induced by the electron charge distribution and atomic bonding between solvent matrix and solute atoms, causing the tweed structure. This paper presents the main finding of a microstructural abnormality, and compares the results with ordering behavior such as premartensitic transformation, and reviews a new regularity generated in the metastable phase of the supersaturated state.

Keywords

metastable phase supersaturated structure tweed ordering behavior elastic strain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. H. Choe, J. H. Choi, S. C. Lee, S. J. Kim and Y. T. Lee,Scripta mater. 39, 749 (1998).CrossRefGoogle Scholar
  2. 2.
    I. M. Robertson and C. M. Wayman,Phil. Mag. 48, 421 (1983).Google Scholar
  3. 3.
    I. M. Robertson and C. M. Wayman,Metall. Trans. A 15, 1353 (1984).CrossRefGoogle Scholar
  4. 4.
    C. M. Hwang, M. Meichle, M. B. Salamon and C. M. Wayman,Res Mechanica 10, 1 (1984).Google Scholar
  5. 5.
    D. Banerjee, A. K. Gogia, T. K. Nandi and V. A. Joshi,Acta mater. 36, 871 (1988).CrossRefGoogle Scholar
  6. 6.
    G. Shao and P. Tsakiropoulos,Acta mater. 48, 3671 (2000).CrossRefGoogle Scholar
  7. 7.
    P. J. Othen, M. L. Jenkins, G. D. W. Smith and W. J. Phythian,Phil. Mag. Lett. 64, 383 (1991).CrossRefADSGoogle Scholar
  8. 8.
    N. Maruyama, M. Sugiyama, T. Hara and H. Tamehiro,Mater. Trans. JIM 40, 268 (1999).Google Scholar
  9. 9.
    P. J. Othen, M. L. Jenkins and G. D. W. Smith,Phil. Mag. A70, 1 (1994).CrossRefADSGoogle Scholar
  10. 10.
    G. M. Michal, P. Moine and R. Sinclair,Acta metall. 30, 125 (1982).CrossRefGoogle Scholar
  11. 11.
    P. Moine, G. M. Michael and R. Sinclair,Acta metall. 30, 109 (1982).CrossRefGoogle Scholar
  12. 12.
    Y. Yamada,Proc. Int. Conf. on Martensitic Transformations, p. 89, Japan Inst. Metals (1986).Google Scholar
  13. 13.
    B. H. Lee and B. H. Choe, J. H. Choi, S. U. Kim, S. J. Kim and Y. T. Lee,J. Kor. Inst. Met. & Mater. 38, 1304 (2000).Google Scholar
  14. 14.
    B. H. Choe and Y. T. Lee,J. Kor. Inst. Met. & Mater. 29, 1156 (1991).Google Scholar
  15. 15.
    S. J. Kim, B. H. Choe and M. Hagiowara,J. Kor. Inst. Met. & Mater. 35, 880 (1997).Google Scholar
  16. 16.
    B. H. Choe, B. H. Lee, K. S. Choi, S. K. Seo, S. E. Kim, S. J. Kim and Y. T. Lee,J. Kor. Inst. Met & Mater. 39, 388 (2001).Google Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Byung-Hak Choe
    • 1
  • Baek-Hee Lee
    • 1
  • Je-Hyun Lee
    • 2
  • Tae-Ho Lee
    • 3
  • Chang Gil Lee
    • 3
  • Sung-Joon Kim
    • 3
  • Yong-Tai Lee
    • 3
  1. 1.Department of Metallurgical EngineeringKangnung National UniversityKangnungKorea
  2. 2.Department of Metallurgy and Materials ScienceChangwon National UniversityChangwonKorea
  3. 3.Department of Materials TechnologyKorea Institute of Machinery and MaterialChangwonKorea

Personalised recommendations