Metals and Materials International

, Volume 7, Issue 6, pp 519–530 | Cite as

Mathematical model to simulate thermo-mechanical controlled processing in rod (or bar) rolling

  • Y. Lee
  • S. I. Kim
  • S. Choi
  • B. L. Jang
  • W. Y. Choo


This study presents a mathematical model for computing the thermo-mechanical parameters such as the strain and strain rate at a given pass and the temperature variation during rolling and cooling between inter-stands (pass), to assess the potential for developing “Thermo-Mechanical Controlled Process” technology in rod (or bar) rolling, which has been a well-known technical terminology in strip (or plate) rolling since the 1970s. The model has then been applied to a four-pass (oval-round or round-oval) bar rolling sequence for predicting the pass-by-pass AGS, by incorporating the equation for recrystallization behavior and AGS evolution being widely used in strip rolling. The predicted AGS was compared with those obtained from the hot torsion experiment. Results revealed the proposed model, coupled with the recrystallization behavior and AGS evolution model developed for strip (or plate) rolling, might be applied directly to rod (or bar) rolling. We also found that the recrystallization behavior during rod rolling was significantly influenced by the method for calculating the thermo-mechanical parameters, especially the strain.


rod (or bar) rolling thermo-mechanical parameters hot torsion test numerical simulation austenite grain size (AGS) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. M. Sellars,Mater. Sci. Tech. 6, 1072 (1990).Google Scholar
  2. 2.
    T. Sakai and J. J. Jonas,Acta metal 32, 189 (1984).CrossRefADSGoogle Scholar
  3. 3.
    P. D. Hodgson and R. K. Gibbs,ISIJ Int. 32, 1329 (1992).CrossRefGoogle Scholar
  4. 4.
    T. M. Maccagno, J. J. Jonas and P. D. Hodgson,ISIJ Int. 36, 720 (1996).CrossRefGoogle Scholar
  5. 5.
    I. P. Kemp,J. Ironmaking and Steelmaking,17, 139 (1990).Google Scholar
  6. 6.
    W. Lehnert and N. D. Cuong,ISIJ Int. 35, 1100 (1995).CrossRefGoogle Scholar
  7. 7.
    K. Karhausen, R. Kopp and M. M. de Souza,Scan. J. Metall. 20, 351 (1991).Google Scholar
  8. 8.
    J. Yanagimoto, T. Ito and J. Liu,ISIJ Int. 40, 65 (2000).CrossRefGoogle Scholar
  9. 9.
    Y. Lee,ISIJ Int. 39, 961 (1999).CrossRefGoogle Scholar
  10. 10.
    Y. Lee, S. Choi, H. Kim and W. Y. Choo,Metals and Materials 6, 525 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. Lee and S. Choi,ISIJ Int. 40, 624 (2000).CrossRefGoogle Scholar
  12. 12.
    Y. Lee, S. Choi and Y. H. Kim,J. Mater. Proc. Tech. 81, 87 (2000).CrossRefGoogle Scholar
  13. 13.
    Z. Wusatowski,Fundamentals of Rolling, p. 107, Pergamon Press, London (1969).Google Scholar
  14. 14.
    G. I. Taylor and H. Quinney,Proc. R. Soc. A 143, 307 (1934).CrossRefADSGoogle Scholar
  15. 15.
    W. C. Chen, I. V. Samarasekera and E. B. Hawbolt,Metall. Trans. A 24, 1307 (1993).CrossRefGoogle Scholar
  16. 16.
    Physical Constants of Some Commercial Steels at Elevated Temperatures, p. 3. The British Iron and Steel Research Association, Butterworths Scientific Publ. Guildford, Surrey, UK (1953).Google Scholar
  17. 17.
    B. Carnahan, H. A. Luther and W. O. Wilkes,Applied Numerical Methods, p. 466, John Wiley & Sons, New York (1979).Google Scholar
  18. 18.
    C. Roucoules, S. Yue and J. J. Jonas,Metall. Mater. Trans. A 26, 181 (1995).CrossRefGoogle Scholar
  19. 19.
    Private communication with P.D. Hodgson.Google Scholar
  20. 20.
    S. Shida,J. JSTP 10, 610 (1969).Google Scholar

Copyright information

© Springer 2001

Authors and Affiliations

  • Y. Lee
    • 1
  • S. I. Kim
    • 2
  • S. Choi
    • 1
  • B. L. Jang
    • 3
  • W. Y. Choo
    • 1
  1. 1.Plate, Rod and Welding GroupPOSCO Technical Research LaboratoriesPohangKorea
  2. 2.School of Materials Science and EngineeringInha UniversityIncheonKorea
  3. 3.R & D Center for MetallurgyKia Steel Co. Ltd.KunsanKorea

Personalised recommendations