Skip to main content
Log in

Ethanol production by mixed-cultures ofPaenibacillus sp. andZymomonas mobilis using the raw starchy material from sweet potato

  • Industrial Microbiology
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

The conversion of raw starchy materials from sweet potato into ethanol in a mixed-culture of an amylolytic bacterium, Paenibacillus sp. and different strains of Zymomonas mobilis were studied. Raw starchy material from sweet potato was hydrolyzed by Paenibacillus sp. to glucose, which is directly used by Z. mobilis for ethanol production. A mixed-culture of Z. mobilis ATCC 29191 and Paenibacillus sp. 9 yielded the highest ethanol concentration (6.89 g/l) in cultures of small volumes. The effects of medium pH (the best pH value were between 5.0 and 6.0) and the supplementation of the medium with glucose on ethanol production were also studied. In a large-scale fermentation, the final concentration of ethanol was 6.60 g/l, which corresponds to 23.24% of the theoretical yield of the ethanol from 50.0 g/l of the starch from raw sweet potato after a 120 h fermentation period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abate C.M., Castro G.R., Siñeriz F., Callieri D.A.S. (1999). Production of amylolytic enzymes byBacillus amylolique-faciens in pure culture and in co-culture withZymomonas mobilis. Biotechnol Lett., 21: 249–252.

    Article  CAS  Google Scholar 

  • Abouzied M., Reddy C. (1987). Fermentation of starch to ethanol by a complementary mixture of an amylolytic yeast andSaccharomyces cerevisiae. Biotechnol Lett., 9: 59–62.

    Article  CAS  Google Scholar 

  • Altintas M.M., Ulgen K.O., Kirdar B., Onsan Z., Oliver S.G. (2002). Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Biotechnol. Bioeng., 31: 640–647.

    Google Scholar 

  • Brestic-Goachet N., Gunasekaran P., Cami B., Baratti J. (1990). Transfer and expression of aBacillus licheniformis alpha-amylase gene inZymomonas mobilis. Arch Microbiol., 153: 219–225.

    Article  CAS  Google Scholar 

  • Budi S.W., Tuinen D. van., Arnould C., Dumas-Gaudot E., Gianinazzi-Pearson V., Gianinazzi S. (2000). Hydrolytic enzyme activity ofPaenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol., 15: 191–199.

    Article  Google Scholar 

  • Chandel A.K., Chan E., Rudravaram R., Narasu L.M.L., Rao L.V., Ravindra P. (2007). Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev., 2: 14–32.

    Google Scholar 

  • Comis D. (2008). Agriculture Research Service USDA. Sweet potato out-yields corn in ethanol production study, http://www.ars.usda.gov/is/pr/2008/080820.htm>

  • Dostálek M., Häggström M. (1983). Mixed culture ofSaccharomycopsis fibuliger andZymomonas mobilis on starch-use of oxygen as a regulator. Eur. J. Appl. Microbiol. Biotechnol., 17: 269–274.

    Article  Google Scholar 

  • Goodman A.E., Rogers P.L., Skotnicki M.L. (1982). Minimal medium for isolation of auxotrophicZymomonas mutants. Appl. Environ. Microbiol., 44: 496–498.

    CAS  PubMed  Google Scholar 

  • Han I., Steinberg M.P. (1987). Amylolysis of raw cornAspergillus niger for simultaneous ethanol fermantation. Biotechnol. Bioeng., 30: 225–232.

    Article  CAS  PubMed  Google Scholar 

  • Hoshino K., Tanikuchi M., Marumoto H., Fujii M. (1989). Repeated batch conversion of raw starch to ethanol using amylase immobilized on a reversible soluble-autoprecipitating carrier and flocculating yeast cells. Agric. Biol. Chem., 53: 1961–1967.

    CAS  Google Scholar 

  • Hoshino K., Tanikuchi M., Marumoto H., Fujii M. (1990). Continuous ethanol production from raw starch using a reversibly soluble-autoprecipitating amylase and flocculating yeast cells. J. Ferment. Bioeng., 69: 228–233.

    Article  CAS  Google Scholar 

  • Huang J., Song J., Qiao F., Keith O.F. (2003). Sweet Potato in China: Economic Aspects and Utilization in Pig Production. International Potato Center (CIP), Bogor, Indonesia.

    Google Scholar 

  • Kleerebezem R., Loosdrecht M.Cv. (2007). Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotech., 18: 1–6.

    Article  Google Scholar 

  • Laluce C., Mattoon J.R. (1984). Development of rapidly fermenting strains ofSaccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appl. Environ. Microbiol., 48: 17–25.

    CAS  PubMed  Google Scholar 

  • Miller G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem., 31: 426–428.

    Article  CAS  Google Scholar 

  • Panesar P.S., Marwaha S.S., Kennedy J.F. (2006).Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol., 81: 623–635.

    Article  CAS  Google Scholar 

  • Reddy O.V.S., Basappa S.C. (1996). Direct fermentation of cassava starch to ethanol by mixed cultures ofEndomycopsis fibuligera andZymomonas mobilis: Synergism and limitations. Biotechnol. Lett., 18: 1315–1318.

    Article  Google Scholar 

  • Rogers P.L., Jeon Y.J., Lee K.J., Lawford H.G. (2007).Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng./Biotechnol., DOI 10.1007/10_2007_060.

  • Schwartz L (2008). China fuels ethanol industry with yams, sweet potatoes and cassava. http://www.renewableen-ergyworld.com/rea/news/story?id=52450.

  • Skotnicki M., Warr R., Goodman A., Lee K., Rogers P.L (1983), High productivity ethanol fermentation usingZymomonas mobilis. Biochem. Soc. Symp., 48: 53–86.

    CAS  PubMed  Google Scholar 

  • Swings J., Deley J. (1977). Biology ofZymomonas. Bacteriol. Rev., 41: 1–46.

    CAS  PubMed  Google Scholar 

  • Tanaka H.K., Murakami H. (1986). Ethanol production from starch by a coimmobilized mixed culture system ofAspergillus a wamori andZymomonas mobilis. Biotechnol. Bioeng., 28: 761–768.

    Article  Google Scholar 

  • Tanaka H., Ebata T., Kuwahara I., Matsuo M., Ogbonna J. C. (1999). Development and application of a system for analysis of mixed cultures of microorganisms. Appl. Biochem. Biotechnol., 80: 51–64.

    Article  CAS  PubMed  Google Scholar 

  • Fang T.-Y., Ford C. (1998). Protein engineering ofAspergillus awamori glucoamylase to increase its pH optimum. Prot. Eng., 11: 383–388.

    Article  CAS  Google Scholar 

  • Verma G., Nigam P., Singh D., Chaudhary K. (2000). Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts andSaccharomyces cerevisiae 21. Biores. Technol., 72: 261–266.

    Article  CAS  Google Scholar 

  • Yamade K., Fukushima S. (1989). Continuous alcohol production from starchy materials with a novel immobilized cell/enzyme bioreactor. J. Ferment. Bioeng., 67: 97–101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Zheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, MX., Li, Y., Liu, X. et al. Ethanol production by mixed-cultures ofPaenibacillus sp. andZymomonas mobilis using the raw starchy material from sweet potato. Ann. Microbiol. 59, 749–754 (2009). https://doi.org/10.1007/BF03179219

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03179219

Key words

Navigation