Advertisement

Annals of Microbiology

, Volume 59, Issue 4, pp 749–754 | Cite as

Ethanol production by mixed-cultures ofPaenibacillus sp. andZymomonas mobilis using the raw starchy material from sweet potato

  • Ming-Xiong He
  • Yi Li
  • Xun Liu
  • Fan Bai
  • Hong Feng
  • Yi-Zheng Zhang
Industrial Microbiology Original Articles

Abstract

The conversion of raw starchy materials from sweet potato into ethanol in a mixed-culture of an amylolytic bacterium, Paenibacillus sp. and different strains of Zymomonas mobilis were studied. Raw starchy material from sweet potato was hydrolyzed by Paenibacillus sp. to glucose, which is directly used by Z. mobilis for ethanol production. A mixed-culture of Z. mobilis ATCC 29191 and Paenibacillus sp. 9 yielded the highest ethanol concentration (6.89 g/l) in cultures of small volumes. The effects of medium pH (the best pH value were between 5.0 and 6.0) and the supplementation of the medium with glucose on ethanol production were also studied. In a large-scale fermentation, the final concentration of ethanol was 6.60 g/l, which corresponds to 23.24% of the theoretical yield of the ethanol from 50.0 g/l of the starch from raw sweet potato after a 120 h fermentation period.

Key words

bioethanol mixed-culture Paenibacillus sp. sweet potato starch Zymomonas mobilis. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abate C.M., Castro G.R., Siñeriz F., Callieri D.A.S. (1999). Production of amylolytic enzymes byBacillus amylolique-faciens in pure culture and in co-culture withZymomonas mobilis. Biotechnol Lett., 21: 249–252.CrossRefGoogle Scholar
  2. Abouzied M., Reddy C. (1987). Fermentation of starch to ethanol by a complementary mixture of an amylolytic yeast andSaccharomyces cerevisiae. Biotechnol Lett., 9: 59–62.CrossRefGoogle Scholar
  3. Altintas M.M., Ulgen K.O., Kirdar B., Onsan Z., Oliver S.G. (2002). Improvement of ethanol production from starch by recombinant yeast through manipulation of environmental factors. Biotechnol. Bioeng., 31: 640–647.Google Scholar
  4. Brestic-Goachet N., Gunasekaran P., Cami B., Baratti J. (1990). Transfer and expression of aBacillus licheniformis alpha-amylase gene inZymomonas mobilis. Arch Microbiol., 153: 219–225.CrossRefGoogle Scholar
  5. Budi S.W., Tuinen D. van., Arnould C., Dumas-Gaudot E., Gianinazzi-Pearson V., Gianinazzi S. (2000). Hydrolytic enzyme activity ofPaenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl. Soil Ecol., 15: 191–199.CrossRefGoogle Scholar
  6. Chandel A.K., Chan E., Rudravaram R., Narasu L.M.L., Rao L.V., Ravindra P. (2007). Economics and environmental impact of bioethanol production technologies: an appraisal. Biotechnol. Mol. Biol. Rev., 2: 14–32.Google Scholar
  7. Comis D. (2008). Agriculture Research Service USDA. Sweet potato out-yields corn in ethanol production study, http://www.ars.usda.gov/is/pr/2008/080820.htm> Google Scholar
  8. Dostálek M., Häggström M. (1983). Mixed culture ofSaccharomycopsis fibuliger andZymomonas mobilis on starch-use of oxygen as a regulator. Eur. J. Appl. Microbiol. Biotechnol., 17: 269–274.CrossRefGoogle Scholar
  9. Goodman A.E., Rogers P.L., Skotnicki M.L. (1982). Minimal medium for isolation of auxotrophicZymomonas mutants. Appl. Environ. Microbiol., 44: 496–498.PubMedGoogle Scholar
  10. Han I., Steinberg M.P. (1987). Amylolysis of raw cornAspergillus niger for simultaneous ethanol fermantation. Biotechnol. Bioeng., 30: 225–232.CrossRefPubMedGoogle Scholar
  11. Hoshino K., Tanikuchi M., Marumoto H., Fujii M. (1989). Repeated batch conversion of raw starch to ethanol using amylase immobilized on a reversible soluble-autoprecipitating carrier and flocculating yeast cells. Agric. Biol. Chem., 53: 1961–1967.Google Scholar
  12. Hoshino K., Tanikuchi M., Marumoto H., Fujii M. (1990). Continuous ethanol production from raw starch using a reversibly soluble-autoprecipitating amylase and flocculating yeast cells. J. Ferment. Bioeng., 69: 228–233.CrossRefGoogle Scholar
  13. Huang J., Song J., Qiao F., Keith O.F. (2003). Sweet Potato in China: Economic Aspects and Utilization in Pig Production. International Potato Center (CIP), Bogor, Indonesia.Google Scholar
  14. Kleerebezem R., Loosdrecht M.Cv. (2007). Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotech., 18: 1–6.CrossRefGoogle Scholar
  15. Laluce C., Mattoon J.R. (1984). Development of rapidly fermenting strains ofSaccharomyces diastaticus for direct conversion of starch and dextrins to ethanol. Appl. Environ. Microbiol., 48: 17–25.PubMedGoogle Scholar
  16. Miller G.L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem., 31: 426–428.CrossRefGoogle Scholar
  17. Panesar P.S., Marwaha S.S., Kennedy J.F. (2006).Zymomonas mobilis: an alternative ethanol producer. J. Chem. Technol. Biotechnol., 81: 623–635.CrossRefGoogle Scholar
  18. Reddy O.V.S., Basappa S.C. (1996). Direct fermentation of cassava starch to ethanol by mixed cultures ofEndomycopsis fibuligera andZymomonas mobilis: Synergism and limitations. Biotechnol. Lett., 18: 1315–1318.CrossRefGoogle Scholar
  19. Rogers P.L., Jeon Y.J., Lee K.J., Lawford H.G. (2007).Zymomonas mobilis for fuel ethanol and higher value products. Adv. Biochem. Eng./Biotechnol., DOI 10.1007/10_2007_060.Google Scholar
  20. Schwartz L (2008). China fuels ethanol industry with yams, sweet potatoes and cassava. http://www.renewableen-ergyworld.com/rea/news/story?id=52450.Google Scholar
  21. Skotnicki M., Warr R., Goodman A., Lee K., Rogers P.L (1983), High productivity ethanol fermentation usingZymomonas mobilis. Biochem. Soc. Symp., 48: 53–86.PubMedGoogle Scholar
  22. Swings J., Deley J. (1977). Biology ofZymomonas. Bacteriol. Rev., 41: 1–46.PubMedGoogle Scholar
  23. Tanaka H.K., Murakami H. (1986). Ethanol production from starch by a coimmobilized mixed culture system ofAspergillus a wamori andZymomonas mobilis. Biotechnol. Bioeng., 28: 761–768.CrossRefGoogle Scholar
  24. Tanaka H., Ebata T., Kuwahara I., Matsuo M., Ogbonna J. C. (1999). Development and application of a system for analysis of mixed cultures of microorganisms. Appl. Biochem. Biotechnol., 80: 51–64.CrossRefPubMedGoogle Scholar
  25. Fang T.-Y., Ford C. (1998). Protein engineering ofAspergillus awamori glucoamylase to increase its pH optimum. Prot. Eng., 11: 383–388.CrossRefGoogle Scholar
  26. Verma G., Nigam P., Singh D., Chaudhary K. (2000). Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts andSaccharomyces cerevisiae 21. Biores. Technol., 72: 261–266.CrossRefGoogle Scholar
  27. Yamade K., Fukushima S. (1989). Continuous alcohol production from starchy materials with a novel immobilized cell/enzyme bioreactor. J. Ferment. Bioeng., 67: 97–101.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Ming-Xiong He
    • 1
  • Yi Li
    • 1
  • Xun Liu
    • 1
  • Fan Bai
    • 1
  • Hong Feng
    • 1
  • Yi-Zheng Zhang
    • 1
  1. 1.Sichuan Key Laboratory of Molecular Biology and Biotechnology, Key Laboratory of Resource Biology and Eco-environment of Ministry of EducationCollege of Life Science, Sichuan UniversityChengduChina

Personalised recommendations