A semi-analytic approach to determine dose rate constant of brachytherapy sources in compliance with AAPM TG 60 formalism

  • T. Palani Selvam
  • P. S. Nagarajan
  • K. N. Govinda Rajan
  • P. Sethulakshmi
  • B. C. Bhatt
Technical Report


Values of dose rate constant (DRC) in compliance with AAPM TG 60 formalism recommended for intravascular brachytherapy (IVBT) were calculated for different point isotropic mono-energetic photon sources in the energy range E=20–1000 keV using a semi-analytic model. Based on these DRC values, DRC of some existing models of192Ir and125I brachytherapy sources were then calculated using (1) bare energy spectra and (2) a single energy parameter which represents mean energy (photon number weighted or air-kerma weighted) for bare and actual sources or the most probable energy of the spectra (energy line with the highest probability of emission) of the investigated sources (192Ir and125I). Applicability of the semi-analytic approach was examined by also computing the values of DRC of the investigated sources using MCNP Monte Carlo simulation code (Version 3.1) that involved modeling of the sources accurately. A comparison of values of DRC resulting from MCNP calculations with those resulting from the semi-analytic approach showed that for192Ir sources the agreement was within 0.40 % and for125I sources it was within 2.3 %.

Key words

dose rate constant semi-analytic approach brachytherapy Monte Carlo method MCNP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nath, R., Anderson, L. L., Luxton, G., Weaver, K. A., Williamson, J. F., Meigooni, A. S.,Dosimetry of interstitial brachytherapy sources: Recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med. Phys. Vol: 22, No: 2, 209–234, 1995.CrossRefPubMedGoogle Scholar
  2. 2.
    Nath, R., Amols, H., Coffey, C., Duggan, D., Jani, S., Li, Z., Schell, M., Soares, C., Whiting, J., Cole, P. E., Crocker, I., Schwartz, R.,Intravascular brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 60. Med. Phys. Vol: 26, No: 2, 119–152, 1999.CrossRefPubMedGoogle Scholar
  3. 3.
    Wang, R., Li, X. A.,Monte Carlo calculation of dosimetric parameters of 90Sr/90Y and192Ir SS sources for intravascular brachytherapy. Med. Phys. Vol: 27, No: 11, 2528–2535, 2000.CrossRefPubMedGoogle Scholar
  4. 4.
    Chen, Z., Nath, R.,Dose rate constant and energy spectrum of interstitial brachytherapy sources. Med. Phys. Vol: 28, No: 1, 86–96, 2001.CrossRefPubMedGoogle Scholar
  5. 5.
    Angelopoulos, A., Perris, A., Sakellariou, K., Sakelliou, L., Sarigiannis, K., Zarris, G.,Accurate Monte Carlo calculations of the combined attenuation and build-up factors, for energies (20–1500 keV) and distances (0–10 cm) relevant in brachytherapy. Phys. Med. Biol. Vol: 36, No: 6, 763–778, 1991.CrossRefPubMedGoogle Scholar
  6. 6.
    Briesmeister, J. F.,MCNP — A general Monte Carlo N-particle transport code (version 3.1) Los Alamos National Laboratory, 1983.Google Scholar
  7. 7.
    Williamson, J. F., Li, Z.,Monte Carlo aided dosimetry of the microselectron pulsed and high dose rate 192Ir sources. Med. Phys. Vol: 22, No: 6, 809–819, 1995.CrossRefPubMedGoogle Scholar
  8. 8.
    Popescu, C. C., Wise, J., Sowards, K., Meigooni, A. S., Ibbott, G. S.,Dosimetric characteristics of the Pharma Seed™ model BT-125-I source. Med. Phys. Vol: 27, No: 9, 2174–21811, 2000.CrossRefPubMedGoogle Scholar
  9. 9.
    Hubbell, J. H., Seltzer, S. M.,Tables of X-ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional substances of Dosimetric Interest, Technical Report NISTIR 5632, NIST, Gaithersburg, MD 20899, 1995.Google Scholar
  10. 10.
    Angelopoulos, A., Baras, P., Sakelliou, L., Karaiskos, P., Sandilos, P.,Monte Carlo dosimetry of a new 192Ir high dose rate brachytherapy source. Med. Phys. Vol: 27, No: 11, 2521–2527, 2000.CrossRefPubMedGoogle Scholar
  11. 11.
    Shirley, V. S.,Nuclear Data Sheet. 64, 205, 1991.CrossRefGoogle Scholar
  12. 12.
    International Commission on Radiological Protection (ICRP)Radionuclide Transformations: Energy and Intensity of Emissions Publication No. 38, 1983.Google Scholar
  13. 13.
    Daskalov, G. M., Loffler, E., Williamson, J. F.,Monte Carlo aided dosimetry of a new high dose-rate brachytherapy source. Med. Phys. Vol: 25, No: 11, 2200–2208, 1998.CrossRefPubMedGoogle Scholar
  14. 14.
    Williamson, J. F.,Comparison of measured and calculated dose rates in water near I-125 and Ir-192 seeds. Med. Phys. Vol: 8, No: 4, 776–786, 1991.CrossRefGoogle Scholar
  15. 15.
    Seltzer, S, M., Lamperti, P. J., Loevinger, R., Soares, C. G., Weaver, J. T.,New NIST air-kerma strength standard for 125I and103Pd brachytherapy seeds. Med. Phys. Vol: 25, No: 7, A170, 1998.Google Scholar
  16. 16.
    Borg, J., Rogers, D. W. O.,Spectra and air-kerma strength for encapsulated 192Ir sources. Med. Phys. Vol: 26, No: 11, 2441–2444, 1999.CrossRefPubMedGoogle Scholar

Copyright information

© Australasian College of Physical Scientists and Engineers in Medicine 2003

Authors and Affiliations

  • T. Palani Selvam
    • 1
  • P. S. Nagarajan
    • 1
  • K. N. Govinda Rajan
    • 1
  • P. Sethulakshmi
    • 1
  • B. C. Bhatt
    • 1
  1. 1.Radiological Physics & Advisory DivisionBhabha Atomic Research CentreAnushaktinagarIndia

Personalised recommendations