Resampling configurations of points through coding schemes

  • Andrea Pallini


We consider nonparametric variance estimation problems in Gibbs point processes admitting the Dobrushin uniqueness condition. Gibbs point processes can be viewed as Gibbs random fields, and vice versa. Nonparametric estimates are obtained from an original sample, which consists of fixed, conditionally independent subregions partitioning the observed region, where a configuration of points lies. Each subregion consists of adjacent rectangles situated around specific sites in a Gibbs random field. We resample these subregions, completely avoiding Monte Carlo simulation.


Coding schemes Conditional independence Gibbs point processes Random fields Nonparametric variance estimation 


  1. Baddeley, A. J. andMøller, J. (1989), Nearest-neighbour Markov poiint processes and random sets.Int. Statist. Rev., 57, 89–121.MATHCrossRefGoogle Scholar
  2. Baddeley, A. J. andVan Lieshout, M. N. M. (1995), Area-interaction point processes.Ann. Inst. Statist. Math., 47, 601–619.MATHCrossRefMathSciNetGoogle Scholar
  3. Baddeley, A. J. andTurner, R. (2000), Practical maximum likelihood for spatial point patterns (with discussion).Aust. N. Z. J. Statist., 42, 901–940.MathSciNetGoogle Scholar
  4. Besag, J. (1975), Statistical analysis of non-lattice data.The Statistician, 24, 179–195.CrossRefGoogle Scholar
  5. Besag, J. (1977), Some methods of statistical analysis for spatial data. Bull. Int. Statist. Inst., 47 (2), 77–92.MathSciNetGoogle Scholar
  6. Bradley, R. C. (1989), A caution on mixing conditions for random fields.Statist. Probab. Lett., 8, 489–491.MATHCrossRefMathSciNetGoogle Scholar
  7. Bradley, R.C. (1993), Some examples of mixing random fields.Rocky Mountainf. Math., 23, 495–519.MATHCrossRefMathSciNetGoogle Scholar
  8. Brown, J. J. (1995), A bootstrap algorithm for the isotropic random sphere.Adv. Appl. Probab., 27, 627–641.MATHCrossRefGoogle Scholar
  9. BÜhlmann, P. andKunsch, H. R. (1995), The blockwise bootstrap for general parameters of a stationary time series. Scand. J. Statist., 22, 35–54.MATHMathSciNetGoogle Scholar
  10. Carlstein, E. (1986), The use of subseries values for estimating the variance of a general statistic from a stationary sequence.Ann. Statist., 14, 1171–1179.MATHCrossRefMathSciNetGoogle Scholar
  11. Cowling, A., Hall, P. andPhillips, M. J. (1996), Bootstrap confidence regions for the intensity of a Poisson point process.J. Amer. Statist. Assoc., 91, 1516–1524.MATHCrossRefMathSciNetGoogle Scholar
  12. Cox, D. R. andIshi, V. (1989),Point Processes. London: Chapman & Hall.Google Scholar
  13. Cressie, N. A. C. (1993),Statistics for Spatial Data. Revised edn. New York: John Wiley and Sons.Google Scholar
  14. Daley, D. J. andVere-Jones, D. (1988),An Introduction to the Theory of Point Processes. New York: Springer-Verlag.MATHGoogle Scholar
  15. Davison, A. C. andHall, P. (1993), On studentizing and blocking methods for implementing the bootstrap with dependent data.Austral. J. Statist., 35, 215–224.MATHCrossRefMathSciNetGoogle Scholar
  16. Diggle, P. J. (1983),Statistical Analysis of Spatial Point Configurations. London: Academic Press.Google Scholar
  17. Diggle, P. J. andChetwynd, A. G. (1991), Second-order analysis of spatial clustering for inhomogeneous populations.Biometrics, 47, 1155–1163.CrossRefGoogle Scholar
  18. Diggle, P. J., Fiksel, T., Grabarnik, P., Ogata, Y., Stoyan, D. andTanemura, M. (1994), On parameter estimation for pairwise interaction point processes.Int. Statist. Rev., 62, 99–117.MATHCrossRefGoogle Scholar
  19. Dobrushin, R. L. (1965), Existence of a phase transition in two-dimensional and three-dimensional Ising models.Theor. Probab. Appl., 10, 193–213.CrossRefMathSciNetGoogle Scholar
  20. Dobrushin, R. L. (1968a), The description of a random field by means of conditional probabilities and conditions on its regularity.Theor. Probab. Appl., 13, 197–224.CrossRefGoogle Scholar
  21. Obrushin, R. L. (1968b), Gibbsian random fields for lattice systems with pairwise interactions.Funct. Anal. Appl., 2, 292–301.CrossRefGoogle Scholar
  22. Dobrushin, R. L. (1968c), The problem of uniqueness of a Gibbsian random field and the problem of phase transitions.Funct. Anal. Appl., 2, 302–312.MATHCrossRefGoogle Scholar
  23. Dobrushin, R. L. (1969), Gibbsian random fields. The general case.Funct. Anal. Appl., 3, 22–28.MATHCrossRefGoogle Scholar
  24. Doukhan, P. (1994),Mixing: Properties and Examples. Lecture Notes in Statist. 85. New York: Springer-Verlag.MATHGoogle Scholar
  25. Föllmer, H. (1982), A covariance estimate for Gibbs measures.J. Funct. Anal., 46, 387–395.MATHCrossRefMathSciNetGoogle Scholar
  26. Garcia-Soidan, P. H. andHall, P. (1997), On sample reuse methods for spatial data.Biometrics, 53, 273–281.MATHCrossRefMathSciNetGoogle Scholar
  27. Geyer, C. J. andThompson, E. A. (1992), Constrained Monte Carlo maximum likelihood for dependent data (with discussion).J. R. Statist. Soc., B, 54, 657–699.MathSciNetGoogle Scholar
  28. GÖtze, F. andKÜnsch, H. R. (1996), Second-order correctness of the blockwise bootstrap for stationary observations.Ann. Statist., 24, 1914–1933.MATHCrossRefMathSciNetGoogle Scholar
  29. Gross, L. (1979), Decay of correlations in classical lattice models at high temperature.Comm. Math. Phys., 68, 9–27.MATHCrossRefMathSciNetGoogle Scholar
  30. Guyon, X. (1995),Random Fields on a Network. New York: Springer-Verlag.MATHGoogle Scholar
  31. Guyon, X. andKÜnsch, H. R. (1992), Asymptotic comparison of estimators in the Ising model. In:Stochastic Models, Statistical Methods, and Algorithms in Image Analysis. Lecture Notes in Statistics 74 (eds. P. Barone, A. Frigessi, M. Piccioni), 177–198. New York: Springer-Verlag.Google Scholar
  32. Hall, P. (1985), Resampling coverage patterns.Stoch. Proc. Appl., 20, 231–246.MATHCrossRefGoogle Scholar
  33. Hall, P. Horowitz, J. L. andJing, B.-Y. (1995), On blocking rules for the bootstrap with dependent data.Biometrika, 82, 561–574.MATHCrossRefMathSciNetGoogle Scholar
  34. Jensen, J. L. (1993), Asymptotic normality of estimates in spatial point processes. Scand. J. Statist., 20, 97–109.MATHMathSciNetGoogle Scholar
  35. Jensen, J. L. andKünsch, H. R. (1994), On asymptotic normality of pseudo likelihood estimates for pairwise interaction processes.Ann. Inst. Statist. Math., 46, 475–486.MATHMathSciNetGoogle Scholar
  36. Jensen, J. L. andMøller, J. (1991), Pseudolikelihood for exponential family models of spatial point processes.Ann. Appi. Probab., 1, 445–461.MATHCrossRefGoogle Scholar
  37. Kaiser, M. S., Hsu, N.-J., Cressie, N. andLahiri, S. N. (1997), Inference for spatial processes using subsampling: a simulation study.Environmetrics, 8, 485–502.CrossRefGoogle Scholar
  38. Kelly, F. P. andRipley, B. D. (1976), A note on Strauss model for clustering.Biometrika, 63, 357–360.MATHCrossRefMathSciNetGoogle Scholar
  39. Kendall, W. S. (1990), A spatial Markov property for nearest-neighbour Markov point processes.J. Appi. Probab., 28, 767–778.CrossRefMathSciNetGoogle Scholar
  40. Klein, D. (1982), Dobrushin uniqueness techniques and the decay of correlations in continuum statistical mechanics.Comm. Math. Phys., 86, 227–246.MATHCrossRefMathSciNetGoogle Scholar
  41. Künsch, H. R. (1982), Decay of correlations under Dobrushin’s uniqueness condition and its applications.Comm. Math. Phys., 84, 207–222.MATHCrossRefMathSciNetGoogle Scholar
  42. Künsch, H. R. (1989), The jackknife and the bootstrap for general stationary observations.Ann. Statist., 17, 1217–1241.MATHCrossRefMathSciNetGoogle Scholar
  43. Lahiri, S. N. (1993), On the moving block bootstrap under long range dependence.Statist. Probab. Lett., 18, 405–413.MATHCrossRefMathSciNetGoogle Scholar
  44. Lahiri, S. N., Kaiser, M. S., Cressie, N. andHsu, N.-J. (1999), Prediction of spatial cumulative distribution functions using subsampling (with discussion).J. Amer. Statist. Assoc., 94, 86–110.MATHCrossRefMathSciNetGoogle Scholar
  45. Ogata, Y. andTanemura, M. (1984), Likelihood analysis of spatial point patterns.J. R. Statist. Soc., B, 46, 496–518.MATHMathSciNetGoogle Scholar
  46. Penttinen, A. (1984),Modelling Interactions in Spatial Point Patterns: Parameter Estimation by The Maximum Likelihood Method. Jyväskylä Studies in Computer Science, Economics and Statistics, University of Jyväskylä.Google Scholar
  47. Penttinen, A., Stoyan, D. andHentronen, H. M. (1992), Marked point processes in forest statistics.Forest. Sci., 38, 806–824.Google Scholar
  48. Politis, D. N. andRomano, J. P. (1993), Nonparametric resampling for homogeneous strong mixing random fields.J. Multiv. Anal., 47, 301–328.MATHCrossRefMathSciNetGoogle Scholar
  49. Politis, D. N. andRomano, J. P. (1994), Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist., 22, 2031–2050.MATHCrossRefMathSciNetGoogle Scholar
  50. Politis, D. N., Romano, J. P. andWolf, M. (1999),Subsampling. New York: Springer- Verlag.MATHGoogle Scholar
  51. Possolo, A. (1991), Subsampling a random field. In:Spatial Statistics and Imaging. IMS Lecture Notes Monograph Series 20 (ed. A. Possolo), 286–294. Hayward, CA: Institute of Mathematical Statistics.CrossRefGoogle Scholar
  52. Preston, C. (1976),Random Fields. Lectures Notes in Mathematics 534. Berlin: Springer-Verlag.MATHGoogle Scholar
  53. Reiss, R.-D. (1993),A Course on Point Processes. Berlin: Springer-Verlag.MATHGoogle Scholar
  54. Ripley, B. D. (1977), Modelling spatial patterns (with discussion).J. R. Statist. Soc., B, 39, 172–212.MathSciNetGoogle Scholar
  55. Ripley, B. D. (1988),Statistical Inference for Spatial Processes. Cambridge: Cambridge University Press.Google Scholar
  56. Ruelle, D. (1969),Statistical Mechanics. New York: John Wiley and Sons.MATHGoogle Scholar
  57. Sherman, M. (1996), Variance estimation for statistics computed from spatial data.J. R. Statist. Soc., B, 58, 509–523.MATHMathSciNetGoogle Scholar
  58. Sherman, M. andCarlstein, E. (1994), Nonparametric estimation of the moments of a general statistic computed from spatial data.J. Amer. Statist. Assoc., 89, 496–500.MATHCrossRefMathSciNetGoogle Scholar
  59. Spitzer, F. (1971), Markov random fields and Gibbs ensembles.Amer. Math. Monthly, 78, 142–154.MATHCrossRefMathSciNetGoogle Scholar
  60. Stein, M. L. (1993), Asymptotically optimal estimation for the reduced second moment measure of point processes.Biometrika, 80, 443–449.MATHCrossRefMathSciNetGoogle Scholar
  61. Stoyan, D., Kendall, W. S. andMecke, J. (1995),Stochastic Geometry and Its Applications, 2dn. Chichester: Wiley.MATHGoogle Scholar
  62. Strauss, D. J. (1975), A model for clustering.Biometrika, 62, 467–475.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Società Italiana di Statistica 2000

Authors and Affiliations

  1. 1.Dipartimento di Scienze Statistiche «Paolo Fortunati»Università di BolognaBolognaItaly

Personalised recommendations