Skip to main content
Log in

Scatter correction in digital radiography using interpolated local sampling of aperture signals

  • Published:
Australasian Physics & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

A scatter correction scheme for radiographic images which is based on two-dimensional interpolation of local scatter measurements is described. Local scatter measurements are obtained using an aperture array. The effect of the scheme on physical imaging performance is evaluated by examining the broad-area contrast, edge sharpness, square wave response function and signal-to-noise ratio of images from a digital fluoroscopy system. It is found that the scheme generates substantial improvement in broad-area contrast and densitometric linearity, has no direct effect on sharpness and limiting spatial resolution, and considerably reduces the signal-to-noise ratio. This latter result is the sole deleterious feature of the correction scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sorenson JA and Niklason LT,Scattered radiation in chest Radiography. In: VL Newhouse, Ed., Progress in Medical Imaging (Springer-Verlag: New York) pp. 159–184, 1988.

    Google Scholar 

  2. Floyd CE, Baker JA, Lo JY, et al.,Measurement of scatter fractions in clinical bedside radiography Radiol., 183, 857–861, 1992.

    Google Scholar 

  3. Maher KP and Malone JF,Computerised scatter correction in diagnostic radiology, Contemp. Phys., 38, 131–148, 1996.

    Google Scholar 

  4. Love LA and Kruger RA,Scatter estimation for a digital radiographic system using convolution filtering, Med. Phys., 14, 178–185, 1987.

    Article  CAS  PubMed  Google Scholar 

  5. Maher KP and Greaves AW,A contrast-detail study of interpolated scatter and glare correction of digital fluoroscopic images, Aust. Phys. Eng. Sci. Med, 15, 95–100, 1992.

    CAS  Google Scholar 

  6. Molloi SY and Mistretta CA,Scatter-glare corrections in quantitative dual-energy fluoroscopy, Med. Phys., 15, 289–297, 1988.

    Article  CAS  PubMed  Google Scholar 

  7. Seibert JA and Boone JM,X-ray scatter removal by Deconvolution. Med. Phys., 15, 567–575, 1988.

    Article  CAS  PubMed  Google Scholar 

  8. Floyd CE, Beatty PT and Ravin CE,Scatter compensation in digital chest radiography using Fourier deconvolution, Invest. Radiol., 24, 30–33, 1989.

    Article  CAS  PubMed  Google Scholar 

  9. Wagner FC, Macovski A and Nishimura DG,Dual-energy xray projection imaging: Two sampling schemes for the correction of scattered radiation, Med. Phys., 15,732–748, 1988.

    Article  CAS  PubMed  Google Scholar 

  10. Shaw CG and Plewes DB,Quantitative digital subtraction angiography: Two scanning techniques for the correction of scattered radiation and veiling glare, Radiol., 157, 247–253, 1985.

    CAS  Google Scholar 

  11. Boone JM,Scatter correction algorithm for digitally acquired radiographs: Theory and results, Med. Phys., 13, 319–328, 1986.

    Article  CAS  PubMed  Google Scholar 

  12. Lo JY, Floyd CE, Baker JA et al.,Scatter compensation in digital chest radiography using the posterior beam stop technique, Med. Phys., 21, 435–443, 1994.

    Article  CAS  PubMed  Google Scholar 

  13. Fivez C, Wambacq P, Vuylsteke P, et al.,Two correction methods for scattered radiation in digital chest radiographs, Patt. Recog. Imag. Anal., 5, 107–113, 1995.

    Google Scholar 

  14. Maher KP,Comparison of scatter measurement techniques in Digital fluoroscopy, Phys. Med. Biol., 38, 1977–1983, 1993.

    Article  Google Scholar 

  15. ICRU Report 54,Medical Imaging-The Assessment of Image, Quality (International Commission on Radiation Units & Measurement: Bethesda) pp. 1–5, 1996.

  16. Press WH, Flannery BP, Teukolsky SA et al.,Numerical Recipes: The Art of Scientific Computing (Cambridge University Press: London) pp 77–101, 1986.

    Google Scholar 

  17. Fujita H, Tsai D-Y, Itoh T, et al.,A simple method for determining the modulation transfer function in digital radiography, IEEE Trans. Med. Imag., 11, 34–39, 1992.

    Article  CAS  Google Scholar 

  18. Dobbins JT,Effects of undersampling on the proper interpretation of modulation transfer function, noise power spectra, and noise equivalent quanta of digital imaging systems, Med. Phys., 22, 171–181, 1995.

    Article  PubMed  Google Scholar 

  19. Maher KP, O’Connor MK and Malone JF,Experimental examination of videodensitometry of large opacifications in digital subtraction angiography, Phys. Med. Biol., 32, 1273–82, 1987.

    Article  CAS  PubMed  Google Scholar 

  20. Balter S, Ergun D, Tscholl E et al.,Digital subtraction angiography: Fundamental noise characteristics, Radiol., 152, 195–198, 1984.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maher, K.P. Scatter correction in digital radiography using interpolated local sampling of aperture signals. Australas. Phys. & Eng. Sci. Med. 24, 79–85 (2001). https://doi.org/10.1007/BF03178350

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03178350

Key words

Navigation