Advertisement

Annals of Microbiology

, Volume 59, Issue 1, pp 169–172 | Cite as

Antimicrobial resistance and production of beta-lactamases in Bulgarian clinical isolatesMoraxella catarrhalis

  • Raina Gergova
  • Rumyana Markovska
  • Ivan Mitov
Applied Microbiology Research Note

Abstract

One hundred and fifteen strains ofMoraxella catarrhalis from inpatients and healthy children were collected from 2000 to 2005. MICs to 17 antimicrobial agents from different groups were determined. High resistance rate to penicillin G, aminopenicillins and first generation cephalosporins (98.26%) was found. Susceptibility to cefuroxime, cefotaxime and ceftriaxone was from 86.08 to 97.40%. AllM. catarrhalis strains were susceptible to aminopenicillin/inhibitor combinations, ceftazidime, ceftibuten, ciprofloxacin and gentamicin. The susceptibility rates to azithromycin, clarithromycin, tetracycline and trimethoprim/sulfamethoxazole were reduced in range of 6–9%. Presence ofbro1 orbro2 genes was revealed in 113M. catarrhalis strains by PCR. The overall prevalence of the BRO-1 and BRO-2 enzymes was 92.92 and 7.08% respectively. MICs of Penicllin were significantly higher inbro1 positive isolates.

Key words

Moraxella catarrhalis beta-lactamases bro PCR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altraja A., Naaber P., Tamm E., Meriste S., Kullamaa A., Leesik H. (2006). Antimicrobial susceptibility of common pathogens from community-acquired lower respiratory tract infections in Estonia. J. Chemother., 18: 603–609.PubMedGoogle Scholar
  2. Bootsma H.J., van Dijk H., Vauterin P., Verhoef J., Mooi F.R. (2000). Genesis of BRO β-lactamase-producingMoraxella catarrhalis: evidence for transformation-mediated horizontal transfer. Mol. Microbiol., 36: 93–104.CrossRefPubMedGoogle Scholar
  3. Brook I., Gober A.E. (2006). Increased recovery ofMoraxella catarrhalis andHaemophilus influenzae in association with group A β-haemolytic streptococci in healthy children and those with pharyngo-tonsillitis J. Med. Microbiol., 55: 989–992.CrossRefPubMedGoogle Scholar
  4. Brook I. (2007). Overcoming penicillin failures in the treatment of Group A streptococcal pharyngo-tonsillitis. Int. J. Pediatr. Otorhi., 71 (10): 1501–8.CrossRefGoogle Scholar
  5. Catlin B.W. (1990).Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin. Microbiol. Rev., 3: 293–330.PubMedGoogle Scholar
  6. Doern G.V., Brueggemann A.B., Pierce G., Hogan T., Holley H.P., Rauch A. (1996). Prevalence of antimicrobial resistance among 723 outpatient clinical isolates ofMoraxella catarrhalis in the United States in 1994 and 1995: results of a 30-center national surveillance study. Antimicrob. Agents Chemother., 40: 2884–2886.PubMedGoogle Scholar
  7. Jones M.E., Blosser-Middleton R.S., Critchley I.A., Karlowsky J.A., Thornsberry C., Sahm D.F. (2003).In vitro susceptibility ofStreptococcus pneumoniae, Haemophilus influenzae andMoraxella catarrhalis: a European multicenter study during 2000–2001. Clin. Microbiol. Infect., 9 (7): 590–599.CrossRefPubMedGoogle Scholar
  8. Kais M., Spindler C., Kalin M., Ortqvist A., Giske C.G. (2006). Quantitative detection ofStreptococcus pneumoniae, Haemophilus influenzae, andMoraxella catarrhalis in lower respiratory tract samples by real-time PCR. Diagn. Microbiol. Infect. Dis., 55 (3): 169–178.CrossRefPubMedGoogle Scholar
  9. Koseoglu O., Ergin A., Hascelik G. (2004). Evalueation of restriction endonucleases analysis of BRO beta-lactamases in clinical and carrier isolates ofMoraxella catarrhalis. Scand. J. Inf. Dis., 36 (4): 431–434.CrossRefGoogle Scholar
  10. Kostova I.P., Changov L.S., Keuleyan E.E., Gergova R.T., Manolov I.I. (1998). Synthesis, analysis and in vitro antibacterial activity of new metal complexes of sulbactam. Farmaco, 53 (12): 737–740.CrossRefPubMedGoogle Scholar
  11. Lafontaine E.R., Wall D., Vanlerberg S.L., Donabedian H., Sledjeski D.D. (2004).Moraxella catarrhalis coaggregates withStreptococcus pyogenes and modulates interactions ofS. pyogenes with human epithelial cells. Infect. Immun., 72 (11): 6689–6693.CrossRefPubMedGoogle Scholar
  12. Levy F., Walker E.S. (2004). BRO {beta}-lactamase alleles, antibiotic resistance and a test of the BRO-1 selective replacement hypothesis inMoraxella catarrhalis. J. Antimicrob. Chemother., 53: 371–374.CrossRefPubMedGoogle Scholar
  13. Melo-Cristino J., Santos L., Ramirez M., Grupo de Estudo Portugues de Bacterias Patogenicas Respiratorias (2006). Virato study: update of antimicrobial susceptibility data of bacterial pathogens from community-acquired respiratory tract infections in Portugal in 2003 and 2004. Rev. Port. Pneumol., 12 (1): 9–30.PubMedGoogle Scholar
  14. National Committee for Clinical Laboratory Standards (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved Standard M7-A4. National Committee for Clinical Laboratory Standards, 2006.Google Scholar
  15. Richter S.S., Winokur P.L., Brueggemann A.B., Huynh H.K., Rhomberg P.R., Wingert E.M., Doern G.V. (2000). Molecular characterization of the β-lactamases from clinical isolates ofMoraxella (Branhamella) catarrhalis obtained from 24 U.S. medical centers during 1994–1995 and 1997–1998. Antimicrob. Agents Chemother., 44: 444–446.CrossRefPubMedGoogle Scholar
  16. Roberts M.C., Pang Y.J., Spencer R.C., Winstanley T.G., Brown B.A., Wallace R.J. (1991). Tetracycline resistance inMoraxella (Branhamella) catarrhalis: demonstration of two clonal out-breaks by using pulsed-field gel electrophoresis. Antimicrob. Agents Chemother., 35: 2453–2455.PubMedGoogle Scholar
  17. Schmitz F.J., Beeck A., Perdikouli M., Boos S., Mayer S., Scheuring K., Köhrer K., Verhoef J., Fluit A.C. (2002). Production of BRO beta-lactamases and resistance to complement in EuropeanMoraxella catarrhalis isolates. J. Clin. Microbiol., 40 (4): 1546–1548.CrossRefPubMedGoogle Scholar
  18. Sethi S., Sethi R., Eschberger K., Lobbins P., Cai X., Grant B.J., Murphy T.F. (2007). Airway bacterial concentrations and exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 176 (4): 356–361.CrossRefPubMedGoogle Scholar
  19. Taylor L., Corey M., Matlow A., Sweezey N.B., Ratjen F. (2006). Comparison of throat swabs and nasopharyngeal suction specimens in non-sputum-producing patients with cystic fibrosis. Pediatr. Pulmonol., 41 (9): 839–843.CrossRefPubMedGoogle Scholar
  20. Verduin C.M., Hol C., Fleer A., van Dijk H., van Belkum A. (2002).Moraxella catarrhalis: from emerging to established pathogen. Clin. Microbiol. Rev., 15: 125–144.CrossRefPubMedGoogle Scholar
  21. Wallace R.J., Steingrube V.A., Nash D.R., Hollis D., Flanagan C., Brown B.A., Labidi A., Weaver R. (1989). BRO β-lactamases ofBranhamella catarrhalis andMoraxella subgenusMoraxella, including evidence for chromosomal β-lactamase transfer by conjugation inB. catarrhalis, M. nonliquefaciens, andM. lacunata. Antimicrob. Agents Chemother., 33: 1845–1854.PubMedGoogle Scholar
  22. Zhanel G.G., Palatnick L., Nichol K.A., Low D.E., Hoban D.J. (2003). Antimicrobial resistance inHaemophilus influenzae andMoraxella catarrhalis respiratory tract isolates: results of the Canadian respiratory organism susceptibility study, 1997 to 2002. Antimicrob. Agents Chemother., 47: 1875–1881.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  1. 1.Department of MicrobiologyMedical UniversitySofiaBulgaria

Personalised recommendations