Advertisement

Annals of Microbiology

, Volume 59, Issue 1, pp 39–44 | Cite as

The influences on conidiophore pleomorphism inClonostachys rosea and RAPD analysis to the mutant producing only verticillate conidiophores

  • Xiaowei Huang
  • Yunxia Li
  • Yingzhen Su
  • Junmei Ding
  • Keqin Zhang
Ecological and Environmental Microbiology Original Articles
  • 66 Downloads

Abstract

Being an effective biocontrol agent,Clonostachys rosea possess morphologically two different kinds of conidiophore structures, verticillate and penicillate respectively. However, the factors that influenced this morphological pleomorphism and its related genetic background remains to be elucidated. In this study, single-spore isolates were obtained from these two types of conidiophores and observed for their cultural and morphological characteristics. The stability of pleomorphism was confirmed through three-months of continuous inoculation and incubation. Additionally, the influences on conidiophore’s morphology under different cultural conditions were also recorded. Our data indicated that the fungal inhibitor thiabendazole changed the formation of conidiophores with only verticillate type produced, which subsequently had effects on its abilities to infect the plant pathogenic fungusRhizoctonia solani and nematodesPanagrellus redivivus in our bioassay. However, the genomic analysis by Random Amplified Polymorphic DNA (RAPD) assay showed no obvious differences detected in the mutant with only verticillate conidiophores and its parent strain, suggesting the change in conidiophore’s type should be attributed to different transcriptional patterns.

Key words

Clonostachys rosea conidiophore pleomorphism RAPD analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmichael J.W. (1981). Pleomorphism. In: Cole G.T., Kendrick B., Eds, Biology of Conidial Fungi, vol. 1, Academic Press, pp. 135–143.Google Scholar
  2. Dong J.Y., Zhao Z.X., Cai L., Liu S.Q., Zhang H.R., Duan M., Zhang K.Q. (2004). Nematicidal effect of freshwater fungal cultures against the pine-wood nematodeBursaphelenchus xylophilus. Fungal Divers., 1: 125–135.Google Scholar
  3. Dong J.Y., He H.P., Shen Y.M., Zhang K.Q. (2005). Nematicidal epipolysulfanyldioxopiperazines fromGliocladium roseum. J. Nat. Prod., 68: 1510–1513.CrossRefPubMedGoogle Scholar
  4. Gams W. (1982). Generic names for synanamorph? Mycotaxon, 15: 459–464.Google Scholar
  5. Hay F.S., Skipp R.A. (1993). Fungi and actinomycete associated with cysts ofHeterodera trifolii Goffart (Nematoda: Tylenchida) in pasture soils in New Zealand. Nematologica, 39: 376–384.CrossRefGoogle Scholar
  6. Henrebert G.L. (1971). Pleomorphism in fungi imperfecti. In: Kendnck J.W., Ed., Taxonomy of Fungi Imperfecti, Univ. Toronto Press, Toronto, pp. 203–223.Google Scholar
  7. Hoopen G.M., Rees R., Aisa P., Stirrup T., Krauss U. (2003). Population dynamics of epiphytic mycoparasites of the generaClonostachys andFusarium for the biocontrol of black pod (Phytophthora palmivora) and moniliasis (Moniliophthora roreri) on cocoa (Theobroma cacao). Mycol. Res., 107: 587–96.CrossRefPubMedGoogle Scholar
  8. Li J., Yang J.K., Huang X.W., Zhang K.Q. (2006a). Purification and characterization of an extracellular serine protease fromClonostachys rosea and its potential as a pathogenic factor. Process Biochem., 52: 130–139.Google Scholar
  9. Li Y., Jeewon R., Hyde D.K., Mo M.H., Zhang K.Q. (2006b). Two new species of nematode-trapping fungi: relationship inferred from morphology, rDNA and protein gene sequence analyses. Mycol. Res., 110: 790–800.CrossRefPubMedGoogle Scholar
  10. Liang Z. (1997). The biological diversity ofCordyceps and its anamorph. Fungi Sci., 12: 51–57.Google Scholar
  11. Liang Z., Roland T.V. (1998). The plemophism in the anamorphic ofCordyceps militaris, Mycosystema, 17: 57–62.Google Scholar
  12. Liu X.Z., Chen S.Y. (2000). Infection ofHeterodera glyxines byHirsutella spp. in Minnesota soybean fields. Biol. Control, 19: 161–166.CrossRefGoogle Scholar
  13. Liu Z., Liang Z., Liu A., Yu Z. (2000). The scanning electronic microscopic observation toC. sphaerocapitata and RAPD analysis. Mycosystema, 19: 56–59.Google Scholar
  14. Mamarabadi M., Jensen D.F., Lübeck M. (2008). An N-acetylbeta-d-glucosaminidase gene, cr-nag1, from the biocontrol agentClonostachys rosea is up-regulated in antagonistic interactions withFusarium culmorum. Mycol. Res. [Epub ahead of print].Google Scholar
  15. Mo M., Dong L., Chi S., Zhang K.Q. (2002). Screening for hyperparasitic fungi ofRhizoctonia solani. Acta Phytopathol. Sin., 32: 84–88.Google Scholar
  16. Pitt J.I., Hocking A.D. (1997). Fungi and Food Spoilage, 2nd edn., Blackie Academic & Professional, pp. 107–143.Google Scholar
  17. Vakili N.G. (1992). Biological seed treatment of corn with mycopathogenic fungi. J. Phytopathol., 134: 313–323.CrossRefGoogle Scholar
  18. Yu Z.F., Qiao M., Zhang Y., Zhang K.Q. (2007). Two new species ofTrichoderma from Yunnan, China. Antonie van Leeuwenhoek, 92: 101–108.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Xiaowei Huang
    • 1
    • 2
  • Yunxia Li
    • 1
    • 2
  • Yingzhen Su
    • 1
    • 2
  • Junmei Ding
    • 1
    • 2
  • Keqin Zhang
    • 1
    • 2
  1. 1.Laboratory for Conservation and Utilization of Bio-ResourcesYunnan UniversityYunnanChina
  2. 2.Key Laboratory for Microbial Resources of the Ministry of EducationYunnan UniversityYunnanChina

Personalised recommendations