Advertisement

Annals of Microbiology

, 59:25 | Cite as

Genetic diversity and salt tolerance of bacterial communities from two Tunisian soils

  • Darine Trabelsi
  • Alessio Mengoni
  • Mohammed Elarbi Aouani
  • Ridha Mhamdi
  • Marco Bazzicalupo
Ecological and Environmental Microbiology Original Articles

Abstract

Microbial ecology studies on arid soils are particularly important for the analysis of biological functions during desertification. Although much is known about the arid saline flora, few researches have directly compared the bacterial communities of saline arid soils with cultivated soils in Northern Africa. Bacterial communities present in two soils from Soliman (north of Tunisia), one salty and neglected, and the other cultivated, were investigated by using both cultivation dependent and independent approaches. The first approach was used to assess the presence of salt tolerant bacteria and the relationships among salt (NaCl) resistance phenotype, soil characteristics and phylogenetic assignment of strains. Total community analysis, performed by T-RFLP on total DNA, was carried out to investigate the relationships between total community fingerprinting with cultivated isolates diversity. The cultivated isolates from salty soil were more genetically diverse, harbouring strains that can grow at high salt concentration. Moreover, the salt resistance of isolates was found not to be related to any particular phylogenetic group, being widespread among isolates belonging to different bacterial subdivisions. Ribotype richness, evaluated as number of different T-RFLP bands (TRFs), was shown to be higher in the agricultural soil than in the salty soil and several agricultural soil-specific TRFs were detected.

Key words

bacterial communities T-RFLP salt tolerance arid soil 

References

  1. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res., 25 (17): 3389–3402.CrossRefPubMedGoogle Scholar
  2. Axelrood P.E., Chow M.L., Radomski C.C., McDermott J.M., Davies J. (2002). Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol., 48 (7): 655–674.CrossRefPubMedGoogle Scholar
  3. Bauder T.A., Waskom R.M., Davis J.G. (2004). Irrigation Water Quality Criteria Irrigation Crop Sciences No. 0.506.Google Scholar
  4. Berg G., Krechel A., Ditz M., Sikora R.A., Ulrich A., Hallmann J. (2005). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS. Microbiol. Ecol., 51 (2): 215–229.CrossRefPubMedGoogle Scholar
  5. Bouhmouch I., Brhada F., Fillali M.A., Aurag J. (2001). Selection of osmotolerant and effective strains of Rhizobiaceae for inoculation of common bean (Phaseolus vulgaris) in Moroccan saline soil. Agronomie, 21 (6): 591–599.CrossRefGoogle Scholar
  6. Buckley D.H., Schmidt T.M. (2003). Diversity and dynamics of microbial communities in soils from agro-ecosystems. Environ. Microbiol., 5 (6): 441–452.CrossRefPubMedGoogle Scholar
  7. Caton T.M., Witte L.R., Ngyuen H.D., Buchheim J.A., Buchheim M.A., Schneegurt M.A. (2004). Halotolerant aerobic heterotrophic bacteria from the great salt plains of Oklahoma. Microb. Ecol., 48 (4): 449–462.CrossRefPubMedGoogle Scholar
  8. Corpet F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res., 16 (22): 10881–10890.CrossRefPubMedGoogle Scholar
  9. Dunbar J., Ticknor L.O., Kuske C.R. (2001). Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol., 67 (1): 190–197.CrossRefPubMedGoogle Scholar
  10. Dean W.E. (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sediment Petr., 44: 242–248.Google Scholar
  11. Ellis R.J., Thompson I.P., Bailey M.J. (1999). Temporal fluctuations in the pseudomonad population associated with sugar beet leaves. FEMS Microb. Ecol., 28 (4): 345–356.CrossRefGoogle Scholar
  12. Excoffier L., Smouse P.E., Quattro M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131 (2): 479–491.PubMedGoogle Scholar
  13. Excoffier L., Guillaume L., Schneider S. (2006). An Integrated Software Package for Population Genetics Data Analysis. Manual Arlequin ver 3.1.Google Scholar
  14. Felske A., de Vos W.M., Akkermans A.D.L. (2000). Spatial distribution of 16S rRNA levels from uncultured acidobacteria in soil. Lett. iAppl. Microbiol., 31: 118–122.CrossRefGoogle Scholar
  15. Galinski E.A., Tindall B.J. (1982). Biotechnological prospects for halophiles and halotolerant micro-organisms. In: Herbert R.H., Sharp R.J. Eds, Molecular Biology and Biotechnology of Extremophiles, Blackie & Son, Glasgow, pp. 76–114.Google Scholar
  16. Girvan M.S., Bullimore J., Pretty J.N., Osborn A.M., Ball A.S. (2003). Soil type is the primary determinant of the composition of the total and active communities in arable soils. Appl. Environ. Microbiol., 69 (3): 1809–1900.CrossRefGoogle Scholar
  17. Gould G.W., Corry J.E.L., Eds (1980). Microbial Growth and Survival in Extremes of Environments, Academic Press, New York, pp. 215–226.Google Scholar
  18. Hartge K.H., Horn R. (1992). Die physikalische Untersuchung von Boden. 3rd edn., Ferdinand Enke, Stuttgart.Google Scholar
  19. Lal B., Khanna, S. (1994). Selection of salt-tolerantRhizobium isolates ofAcacia nilotica. World J. Microbiol. Biotechnol., 10 (6): 637–639.CrossRefGoogle Scholar
  20. LaMontagne M.G., Michel F.C., Holden P.A., Reddy C.A. (2002). Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from compost for microbial community analysis. J. Microbiol. Methods, 49 (3): 225–264.CrossRefGoogle Scholar
  21. Lanyi J.K. (1979). Salt tolerance in microorganisms. In: Hollander A., Aller J.C., Epstein E., San Pietri A., Zaborsky O.R., Eds, The Biosphere Concept: An Approach to the Utilization of Under Exploited Resources. Plenum Press, New York, pp. 217–232.Google Scholar
  22. Liu W.T., Marsh T.L., Cheng H., Forney L.J. (1997). Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol., 63 (11): 4516–4522.PubMedGoogle Scholar
  23. Lozupone A.C., Knight R. (2007). Global patterns in bacterial diversity. PNAS, 104 (27): 11436–11440.CrossRefPubMedGoogle Scholar
  24. Marsh T.L. (1999). Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol., 2 (3): 323–327.CrossRefPubMedGoogle Scholar
  25. Mengoni A., Bazzicalupo M. (2002). The statistical treatment of data and the analysis of molecular variance (AMOVA) in molecular microbial ecology. Ann. Microbiol., 52: 95–101.Google Scholar
  26. Mengoni A., Grassi E., Bazzicalupo M. (2002). A cloning method for the taxonomic interpretation of T-RFLP patterns. Biotechniques, 33 (5): 990–992.PubMedGoogle Scholar
  27. Mengoni A., Grassi E., Barzanti R., Biondi E.G., Gonnelli C., Kim C.K., Bazzicalupo M. (2004). Genetic diversity of bacterial communities of serpentine soil and of rhizosphere of the nickel-hyperaccumulator plantAlyssum bertolonii. Microb. Ecol., 48 (2): 209–217.CrossRefPubMedGoogle Scholar
  28. Mengoni A., Giuntini E., Bazzicalupo M. (2007). Application of terminal-restriction fragment length polymorphism for molecular analysis of soil bacterial communities. In: Varma A., Oelmuller R., Eds, Soil Biology, Vol. 11, Advanced Techniques in Soil Microbiology, Springer-Verlag, Berlin, Heidelberg, pp. 295–305.CrossRefGoogle Scholar
  29. Mhamdi R., Laguerre G., Aouani M.E., Mars M., Amarger N. (2002). Different species and symbiotic genotypes of Weld rhizobia can nodulatePhaseolus vulgaris in Tunisian soils. FEMS Microb. Ecol., 41: 77–84, DOI 10.1016/S0168-6496(02)00264-7CrossRefGoogle Scholar
  30. Miller K.J., Wood J.M. (1996). Osmoadaptation by rhizosphere bacteria. Annu. Rev. Microbiol., 50: 101–136.CrossRefPubMedGoogle Scholar
  31. Miller R.G. Jr. (1997). Beyond ANOVA. Basics of Applied Statistics. Chapman & Hall, London, UK.Google Scholar
  32. Øvreås L., Torsvik V. (1998). Microbial diversity and community structure in two different agricultural soil communities. Microbiol. Ecol., 36 (3): 303–315.CrossRefGoogle Scholar
  33. Paul E.A., Clark F.E. (1989). Soil Microbiology and Biochemistry. Academic Press Inc, San Diego.Google Scholar
  34. Rodriguez V.F. (1991). Biotechnological potential of halobacteria. In: Danson M.J., Hough D.W., Lunt G.G., Eds, The Archaebacteria: Biochemistry and Biotechnology, Portland Press, London and Chapel Hill.Google Scholar
  35. Rohlf F.J. (1990). Numerical Taxonomy and Multivariate Analysis System. Version 2.02. Exeter Software, New York.Google Scholar
  36. Rosenberg A. (1983).Pseudomonas halodurans sp. nov., a halotolerant bacterium. Arch. Microbiol., 136 (2): 117–123.CrossRefGoogle Scholar
  37. Smit E., Leeflang P., Gommans S., Broek V.D.J., Mil V.S., Wernars K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol., 67 (5): 2284–2291.CrossRefPubMedGoogle Scholar
  38. Thumar J.T., Singh P.S. (2007). Secretion of an alkaline protease from a salt tolerant and alkaliphilic,Streptomyces clavuligerus strain mit-1. Br. J. Microbiol., 38: 766–772.Google Scholar
  39. Vaneechoutte M., Rossau R., De Vos P., Gillis M., Janssens D., Paepe N. (1992). Rapid identification of the bacteria of the Comamonadaceae with amplified ribosomal DNA-restriction analysis (ARDRA). FEMS Microbiol. Lett., 93 (3): 227–234.CrossRefGoogle Scholar
  40. Vasavada S.H., Thumar J.T., Singh S.P. (2006). Secretion of a potent antibiotic by salt-tolerant and alkaliphilic actinomyceteStreptomyces sannanensis strain RJT-1. Curr. Sci., 91 (10): 1393–1397.Google Scholar
  41. Yeates C., Gillings M.R., Davison N., Altavilla N., Veal D.A. (1998). Methods for microbial DNA extraction from soil for PCR amplification. Biol. Proced., 1 (1): 40–47.CrossRefGoogle Scholar
  42. Zahran H.H. (1991). Conditions for successfulRhizobium-legume symbiosis in saline environments. Biol. Fertil. Soils, 12 (1): 73–80.CrossRefGoogle Scholar
  43. Zahran H.H., Moharram A.M., Mohammad H.A. (1992). Some ecological and physiological studies on bacteria isolated from salt-affected soils of Egypt. J. Basic Microbiol., 32 (6): 405–413.CrossRefPubMedGoogle Scholar
  44. Zahran H.H. (1999). MicrobiolRhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Mol. Biol. Rev., 63 (4): 968–989.Google Scholar
  45. Zhou J., Xia B., Huang H., Palumbo A.V., Tiedje J.M. (2004). Microbial diversity and heterogeneity in sandy subsurface soils. Appl. Environ. Microbiol., 70 (3): 1723–1734.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Darine Trabelsi
    • 1
    • 2
  • Alessio Mengoni
    • 2
  • Mohammed Elarbi Aouani
    • 1
  • Ridha Mhamdi
    • 1
  • Marco Bazzicalupo
    • 2
  1. 1.Laboratoire des Interactions Légumineuses-MicroorganismesCentre de Biotechnologie de Borj-CedriaTunisia
  2. 2.Department of Evolutionary BiologyUniversity of FirenzeFirenzeItaly

Personalised recommendations