Advertisement

Annals of Microbiology

, Volume 58, Issue 4, pp 741–747 | Cite as

Identification ofGluconobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses

  • Jintana Kommanee
  • Ancharida Akaracharanya
  • Somboon Tanasupawat
  • Taweesak Malimas
  • Pattaraporn Yukphan
  • Yasuyoshi Nakagawa
  • Yuzo Yamada
Methods Original Articles

Abstract

Forty-five acetic acid bacteria, which were isolated from fruits, flowers and other materials collected in Thailand by an enrichment culture approach, were assigned to the genusGluconobacter by phenotypic and chemotaxonomic characterisations. On the basis of 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses, the forty-five isolates were grouped into five groups and identified at the specific level as follows: 1) seventeen isolates were grouped into Group A and identified asG. oxydans; 2) twelve isolates were grouped into Group B and identified asG. cerinus; 3) nine isolates were grouped into Group C and identified asG. frateurii; 4) six isolates were included into Group D and identified asG. thailandicus; 5) one isolate was grouped into Group E, characterised by a restriction pattern comprised of 667 and 48-bp fragments inAvaII digestion, differing from those of strains of Group C orG. frateurii and Group D orG. thailandicus, and unidentified.

Key words

acetic acid bacteria Gluconobacter Thai isolates 16S–23S rRNA gene ITS restriction analyses 16S rRNA gene sequence analyses 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asai T., Iizuka H., Komagata K. (1964). The flagellation and taxonomy of generaGluconobacter andAcetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol., 10: 95–126.CrossRefGoogle Scholar
  2. Brosius J., Dull T.J., Sleeter D.D., Noller H.F. (1981). Gene organization and primary structure of a ribosomal RNA operon fromEscherichia coli. J. Mol. Biol., 148: 107–127.CrossRefPubMedGoogle Scholar
  3. De Ley J. (1961). Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol., 24: 31–50.Google Scholar
  4. Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.CrossRefGoogle Scholar
  5. Gosselé F., Swings J., Kersters K., De Ley J. (1983). Numerical analysis of phenotypic features and protein gel electropherograms ofGluconobacter Asai 1935 emend. mut. char. Asai, Iizuka, and Komagata 1964. Int. J. Syst. Bacteriol., 33: 65–81.Google Scholar
  6. Greenberg D.E., Porcella S.F., Stock F., Wong A., Conville P.S., Murray P.R., Holland S.M., Zelazny A.M. (2006).Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the familyAcetobacteraceae. Int. J. Syst. Evol. Microbiol., 50: 1981–1987.Google Scholar
  7. Hucker G.J., Conn H.J. (1923). Method of Gram staining. Technical Bulletin, New York State Agricultural Experiment Station. Ithaca, 93: 3–37.Google Scholar
  8. Huong V.T.L., Malimas T., Yukphan P., Potacharoen W., Tanasupawat S., Loan L.T.T., Tanticharoen M., Yamada Y. (2007). Identification of Thai isolates assigned to the genusGluconobacter based on 16S–23S rDNA ITS restriction analysis. J. Gen. Appl. Microbiol., 53: 133–142.CrossRefGoogle Scholar
  9. Jojima Y., Mihara Y., Suzuki S., Yokozeki K., Yamanaka S., Fudou R. (2004).Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int. J. Syst. Evol. Microbiol., 54: 2263–2267.CrossRefPubMedGoogle Scholar
  10. Kimura M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111–120.CrossRefPubMedGoogle Scholar
  11. Katsura K., Yamada Y., Uchimura T., Komagata K. (2002).Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym ofGluconobacter cerinus Yamada and Akita 1994. Int. J. Syst. Evol. Microbiol., 52: 1635–1640.CrossRefPubMedGoogle Scholar
  12. Kersters K., Lisdiyanti P., Komagata K., Swings J. (2006). The familyAcetobacteraceae: The generaAcetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter andKozakia. In: Dworkin M., Falcow S., Rosenberg E., Schleifer K.H., Stackebrands E., Eds., The Prokaryotes, Vol. 5, 3rd edn., Springer, New York, pp. 163–200.Google Scholar
  13. Kommanee J., Akaracharanya A., Tanasupawat S., Malimas T., Yukphan P., Nakagawa Y., Yamada Y. (2008). Identification ofAcetobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol., 58: 319–324.CrossRefGoogle Scholar
  14. Loganathan P., Nair S. (2004).Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int. J. Syst. Evol. Microbiol., 54: 1185–1190.CrossRefPubMedGoogle Scholar
  15. Malimas T., Yukphan P., Takahashi M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2006). Heterogeneity of strains assigned toGluconobacter frateuii Mason and Claus 1989 based on restriction analysis of 16S–23S rDNA internal transcibed spacer regions. Biosci. Biotech. Biochem., 70: 684–690.CrossRefGoogle Scholar
  16. Malimas T., Yukphan P., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2007).Gluconobacter kondonii sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. J. Gen. Appl. Microbiol., 53: 301–307.CrossRefPubMedGoogle Scholar
  17. Malimas T., Yukphan P., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2008a).Gluconobacter kondonii Malimaset al. 2008. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 120. Int. J. Syst. Evol. Microbiol., 58: 529–530.Google Scholar
  18. Malimas T., Yukphan P., Takahashi M., Muramatsu Y., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2008b).Gluconobacter roseus (ex Asai 1935) sp. nov., nom. rev., a pink-colored acetic acid bacterium in the Alphaproteobacteria. J. Gen. Appl. Microbiol., 54: 119–125.CrossRefPubMedGoogle Scholar
  19. Malimas T., Yukphan P., Takahashi M., Muramatsu Y., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2008c).Gluconobacter roseus (ex Asai 1935) Malimaset al. 2008. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 122. Int. J. Syst. Evol. Microbiol., 58: 1511–1512.Google Scholar
  20. Mason L.M., Claus G.W. (1989). Phenotypic characteristic correlated with deoxyribonucleic acid sequence similarity for three species ofGluconobacter: G. oxydans (Henneberg 1897) De ley 1961,G. frateurii sp. nov., andG. asaii sp. nov. Int. J. Syst. Bacteriol., 39: 174–184.Google Scholar
  21. Moonmangmee D., Adachi O., Ano Y., Shinagawa E., Toyama H., Theeragool G., Lotong N., Matsushita K. (2000). Isolation and characterization of thermotolerantGluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci. Biotech. Biochem., 64: 2306–2315.CrossRefGoogle Scholar
  22. Saitou N., Nei M. (1987). The neighboring-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406–425.PubMedGoogle Scholar
  23. Skerman V.B.D., Mcgowan V., Sneath P.H.A. (1980). Approved lists of bacterial names. Int. J. Syst. Bacteriol., 30: 225–420.CrossRefGoogle Scholar
  24. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. (1983). Analysis of bacterial menaquinone mixtures by high-performances liquid chromatography. J. Appl. Bacteriol., 54: 31–36.Google Scholar
  25. Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596–1599.CrossRefPubMedGoogle Scholar
  26. Tanaka M., Murakami S., Shinke R., Aoki K. (1999). Reclassification of the strains with low G+C contents of DNA belonging to the genusGluconobacter Asai 1935 (Acetobacteraceae). Biosci. Biotechnol. Biochem., 63: 989–992.CrossRefGoogle Scholar
  27. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. (2004).Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the [alpha]-proteobacteria. J. Gen. Appl. Microbiol., 50: 159–167.CrossRefPubMedGoogle Scholar
  28. Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. (2005).Gluconobacter thailandicus Tanasupawatet al. 2005. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 103. Int. J. Syst. Evol. Microbiol., 55: 983–985.CrossRefGoogle Scholar
  29. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4876–4882.CrossRefPubMedGoogle Scholar
  30. Trček J., Teuber M. (2002). Genetic restriction analysis of the 16S–23S rRNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol. Lett., 208: 69–75.PubMedCrossRefGoogle Scholar
  31. Yamada Y., Aida K., Uemura T. (1969). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification ofGluconobacter andAcetobacter, especially of the so-called intermediate strains. J. Gen. Appl. Microbiol., 15: 186–196.CrossRefGoogle Scholar
  32. Yamada Y., Okada Y., Kondo K. (1976). Isolation and characterization of polarly flagellated intermediate strains in acetic acid bacteria. J. Gen. Appl. Microbiol., 22: 237–245.CrossRefGoogle Scholar
  33. Yamada Y., Akita M. (1984a). An electrophoretic comparison of enzymes in strains ofGluconobacter species. J. Gen. Appl. Microbiol., 30: 115–126.CrossRefGoogle Scholar
  34. Yamada Y., Akita M. (1984b).Gluconobacter cerinus. In: Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 16. Int. J. Syst. Bacteriol., 34: 503–504.CrossRefGoogle Scholar
  35. Yamada Y., Hosono R., Lisdyanti P., Widyastuti Y., Saono S., Uchimura T., Komagata K. (1999). Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genusGluconobacter. J. Gen. Appl. Microbiol., 45: 23–28.CrossRefPubMedGoogle Scholar
  36. Yukphan P., Takahashi M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2004a).Gluconobacter albidus (ex Kondo and Ameyama 1958) sp. nov., nom. rev., an acetic acid bacterium in the a-Proteobacteria. J. Gen. Appl. Microbiol., 50: 235–242.CrossRefPubMedGoogle Scholar
  37. Yukphan P., Potacharoen W., Potacharoen W., Nakagawa Y., Tanticharoen M., Yamada Y. (2004b). Identification of strains assigned to the genusGluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S–23S rDNA internal transcribed spacer regions. J. Gen. Appl. Microbiol., 50: 9–15.CrossRefPubMedGoogle Scholar
  38. Yukphan P., Malimas T., Potacharoen W., Tanasupawat S., Tanticharoen M., Yamada Y. (2005a).Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the α-Proteobacteria. J. Gen. Appl. Microbiol., 51: 301–311.CrossRefPubMedGoogle Scholar
  39. Yukphan P., Takahashi M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada, Y. (2005b).Gluconobacter albidus (ex Kondo and Ameyama 1958) Yukphanet al. 2005. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 103. Int. J. Syst. Evol. Microbiol., 55: 983–985.Google Scholar
  40. Yukphan P., Malimas T., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2006). Identification of strains assigned to the genus Asaia Yamadaet al. 2000 based on 16S rDNA restriction analysis. J. Gen. Appl. Microbiol., 52: 241–247.CrossRefPubMedGoogle Scholar
  41. Yukphan P., Malimas T., Muramasu Y., Takahashi M., Kaneyasu M., Tanasupawat S., Nakagawa Y., Suzuki K.I., Potacharoen W., Busabun T., Yamada Y. (2008a).Tanticharoenia sakaeratensis gen. nov., sp. nov., a new osmotolerant acetic acid bacterium in the alpha-Proteobacteria. Biosci. Biotechnol. Biochem., 72: 672–676.CrossRefPubMedGoogle Scholar
  42. Yukphan P., Malimas T., Muramatsu Y., Takahashi M., Kaneyasu M., Tanasupawat S., Nakagawa Y., Potacharoen W., Yamada Y. (2008b).Tanticharoenia Yukphanet al. 2008:Tanticharoenia sakaeratensis Yukphanet al. 2008. In: List of new names and new combinations previously effectively, but not validly published, Validation List no. 122. Int. J. Syst. Evol. Microbiol. 58: (In Press).Google Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Jintana Kommanee
    • 1
  • Ancharida Akaracharanya
    • 1
  • Somboon Tanasupawat
    • 2
  • Taweesak Malimas
    • 3
  • Pattaraporn Yukphan
    • 3
  • Yasuyoshi Nakagawa
    • 4
  • Yuzo Yamada
    • 3
  1. 1.Department of Microbiology, Faculty of ScienceChulalongkorn UniversityBangkokThailand
  2. 2.Department of Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  3. 3.BIOTEC Culture Collection (BCC), BIOTEC Central Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development AgencyPathumthaniThailand
  4. 4.NITE Biological Resource Center (NBRC), Department of BiotechnologyNational Institute of Technology and Evaluation (NITE)KisarazuJapan

Personalised recommendations