Skip to main content
Log in

Identification ofGluconobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses

  • Methods
  • Original Articles
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Forty-five acetic acid bacteria, which were isolated from fruits, flowers and other materials collected in Thailand by an enrichment culture approach, were assigned to the genusGluconobacter by phenotypic and chemotaxonomic characterisations. On the basis of 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses, the forty-five isolates were grouped into five groups and identified at the specific level as follows: 1) seventeen isolates were grouped into Group A and identified asG. oxydans; 2) twelve isolates were grouped into Group B and identified asG. cerinus; 3) nine isolates were grouped into Group C and identified asG. frateurii; 4) six isolates were included into Group D and identified asG. thailandicus; 5) one isolate was grouped into Group E, characterised by a restriction pattern comprised of 667 and 48-bp fragments inAvaII digestion, differing from those of strains of Group C orG. frateurii and Group D orG. thailandicus, and unidentified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asai T., Iizuka H., Komagata K. (1964). The flagellation and taxonomy of generaGluconobacter andAcetobacter with reference to the existence of intermediate strains. J. Gen. Appl. Microbiol., 10: 95–126.

    Article  Google Scholar 

  • Brosius J., Dull T.J., Sleeter D.D., Noller H.F. (1981). Gene organization and primary structure of a ribosomal RNA operon fromEscherichia coli. J. Mol. Biol., 148: 107–127.

    Article  CAS  PubMed  Google Scholar 

  • De Ley J. (1961). Comparative carbohydrate metabolism and a proposal for a phylogenetic relationship of the acetic acid bacteria. J. Gen. Microbiol., 24: 31–50.

    Google Scholar 

  • Felsenstein J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39: 783–791.

    Article  Google Scholar 

  • Gosselé F., Swings J., Kersters K., De Ley J. (1983). Numerical analysis of phenotypic features and protein gel electropherograms ofGluconobacter Asai 1935 emend. mut. char. Asai, Iizuka, and Komagata 1964. Int. J. Syst. Bacteriol., 33: 65–81.

    Google Scholar 

  • Greenberg D.E., Porcella S.F., Stock F., Wong A., Conville P.S., Murray P.R., Holland S.M., Zelazny A.M. (2006).Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the familyAcetobacteraceae. Int. J. Syst. Evol. Microbiol., 50: 1981–1987.

    Google Scholar 

  • Hucker G.J., Conn H.J. (1923). Method of Gram staining. Technical Bulletin, New York State Agricultural Experiment Station. Ithaca, 93: 3–37.

    Google Scholar 

  • Huong V.T.L., Malimas T., Yukphan P., Potacharoen W., Tanasupawat S., Loan L.T.T., Tanticharoen M., Yamada Y. (2007). Identification of Thai isolates assigned to the genusGluconobacter based on 16S–23S rDNA ITS restriction analysis. J. Gen. Appl. Microbiol., 53: 133–142.

    Article  CAS  Google Scholar 

  • Jojima Y., Mihara Y., Suzuki S., Yokozeki K., Yamanaka S., Fudou R. (2004).Saccharibacter floricola gen. nov., sp. nov., a novel osmophilic acetic acid bacterium isolated from pollen. Int. J. Syst. Evol. Microbiol., 54: 2263–2267.

    Article  CAS  PubMed  Google Scholar 

  • Kimura M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol., 16: 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Katsura K., Yamada Y., Uchimura T., Komagata K. (2002).Gluconobacter asaii Mason and Claus 1989 is a junior subjective synonym ofGluconobacter cerinus Yamada and Akita 1994. Int. J. Syst. Evol. Microbiol., 52: 1635–1640.

    Article  CAS  PubMed  Google Scholar 

  • Kersters K., Lisdiyanti P., Komagata K., Swings J. (2006). The familyAcetobacteraceae: The generaAcetobacter, Acidomonas, Asaia, Gluconacetobacter, Gluconobacter andKozakia. In: Dworkin M., Falcow S., Rosenberg E., Schleifer K.H., Stackebrands E., Eds., The Prokaryotes, Vol. 5, 3rd edn., Springer, New York, pp. 163–200.

    Google Scholar 

  • Kommanee J., Akaracharanya A., Tanasupawat S., Malimas T., Yukphan P., Nakagawa Y., Yamada Y. (2008). Identification ofAcetobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol., 58: 319–324.

    Article  CAS  Google Scholar 

  • Loganathan P., Nair S. (2004).Swaminathania salitolerans gen. nov., sp. nov., a salt-tolerant, nitrogen-fixing and phosphate-solubilizing bacterium from wild rice (Porteresia coarctata Tateoka). Int. J. Syst. Evol. Microbiol., 54: 1185–1190.

    Article  CAS  PubMed  Google Scholar 

  • Malimas T., Yukphan P., Takahashi M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2006). Heterogeneity of strains assigned toGluconobacter frateuii Mason and Claus 1989 based on restriction analysis of 16S–23S rDNA internal transcibed spacer regions. Biosci. Biotech. Biochem., 70: 684–690.

    Article  CAS  Google Scholar 

  • Malimas T., Yukphan P., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2007).Gluconobacter kondonii sp. nov., an acetic acid bacterium in the alpha-Proteobacteria. J. Gen. Appl. Microbiol., 53: 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Malimas T., Yukphan P., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2008a).Gluconobacter kondonii Malimaset al. 2008. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 120. Int. J. Syst. Evol. Microbiol., 58: 529–530.

  • Malimas T., Yukphan P., Takahashi M., Muramatsu Y., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2008b).Gluconobacter roseus (ex Asai 1935) sp. nov., nom. rev., a pink-colored acetic acid bacterium in the Alphaproteobacteria. J. Gen. Appl. Microbiol., 54: 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Malimas T., Yukphan P., Takahashi M., Muramatsu Y., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2008c).Gluconobacter roseus (ex Asai 1935) Malimaset al. 2008. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 122. Int. J. Syst. Evol. Microbiol., 58: 1511–1512.

  • Mason L.M., Claus G.W. (1989). Phenotypic characteristic correlated with deoxyribonucleic acid sequence similarity for three species ofGluconobacter: G. oxydans (Henneberg 1897) De ley 1961,G. frateurii sp. nov., andG. asaii sp. nov. Int. J. Syst. Bacteriol., 39: 174–184.

    Google Scholar 

  • Moonmangmee D., Adachi O., Ano Y., Shinagawa E., Toyama H., Theeragool G., Lotong N., Matsushita K. (2000). Isolation and characterization of thermotolerantGluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci. Biotech. Biochem., 64: 2306–2315.

    Article  CAS  Google Scholar 

  • Saitou N., Nei M. (1987). The neighboring-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406–425.

    CAS  PubMed  Google Scholar 

  • Skerman V.B.D., Mcgowan V., Sneath P.H.A. (1980). Approved lists of bacterial names. Int. J. Syst. Bacteriol., 30: 225–420.

    Article  Google Scholar 

  • Tamaoka J., Katayama-Fujimura Y., Kuraishi H. (1983). Analysis of bacterial menaquinone mixtures by high-performances liquid chromatography. J. Appl. Bacteriol., 54: 31–36.

    CAS  Google Scholar 

  • Tamura K., Dudley J., Nei M., Kumar S. (2007). MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24: 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M., Murakami S., Shinke R., Aoki K. (1999). Reclassification of the strains with low G+C contents of DNA belonging to the genusGluconobacter Asai 1935 (Acetobacteraceae). Biosci. Biotechnol. Biochem., 63: 989–992.

    Article  CAS  Google Scholar 

  • Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. (2004).Gluconobacter thailandicus sp. nov., an acetic acid bacterium in the [alpha]-proteobacteria. J. Gen. Appl. Microbiol., 50: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Tanasupawat S., Thawai C., Yukphan P., Moonmangmee D., Itoh T., Adachi O., Yamada Y. (2005).Gluconobacter thailandicus Tanasupawatet al. 2005. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 103. Int. J. Syst. Evol. Microbiol., 55: 983–985.

    Article  Google Scholar 

  • Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 25: 4876–4882.

    Article  CAS  PubMed  Google Scholar 

  • Trček J., Teuber M. (2002). Genetic restriction analysis of the 16S–23S rRNA internal transcribed spacer regions of the acetic acid bacteria. FEMS Microbiol. Lett., 208: 69–75.

    Article  PubMed  Google Scholar 

  • Yamada Y., Aida K., Uemura T. (1969). Enzymatic studies on the oxidation of sugar and sugar alcohol. V. Ubiquinone of acetic acid bacteria and its relation to classification ofGluconobacter andAcetobacter, especially of the so-called intermediate strains. J. Gen. Appl. Microbiol., 15: 186–196.

    Article  Google Scholar 

  • Yamada Y., Okada Y., Kondo K. (1976). Isolation and characterization of polarly flagellated intermediate strains in acetic acid bacteria. J. Gen. Appl. Microbiol., 22: 237–245.

    Article  Google Scholar 

  • Yamada Y., Akita M. (1984a). An electrophoretic comparison of enzymes in strains ofGluconobacter species. J. Gen. Appl. Microbiol., 30: 115–126.

    Article  CAS  Google Scholar 

  • Yamada Y., Akita M. (1984b).Gluconobacter cerinus. In: Validation of the publication of new names and new combinations previously effectively published outside the IJSB, List no. 16. Int. J. Syst. Bacteriol., 34: 503–504.

    Article  Google Scholar 

  • Yamada Y., Hosono R., Lisdyanti P., Widyastuti Y., Saono S., Uchimura T., Komagata K. (1999). Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genusGluconobacter. J. Gen. Appl. Microbiol., 45: 23–28.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Takahashi M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2004a).Gluconobacter albidus (ex Kondo and Ameyama 1958) sp. nov., nom. rev., an acetic acid bacterium in the a-Proteobacteria. J. Gen. Appl. Microbiol., 50: 235–242.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Potacharoen W., Potacharoen W., Nakagawa Y., Tanticharoen M., Yamada Y. (2004b). Identification of strains assigned to the genusGluconobacter Asai 1935 based on the sequence and the restriction analyses of the 16S–23S rDNA internal transcribed spacer regions. J. Gen. Appl. Microbiol., 50: 9–15.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Malimas T., Potacharoen W., Tanasupawat S., Tanticharoen M., Yamada Y. (2005a).Neoasaia chiangmaiensis gen. nov., sp. nov., a novel osmotolerant acetic acid bacterium in the α-Proteobacteria. J. Gen. Appl. Microbiol., 51: 301–311.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Takahashi M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada, Y. (2005b).Gluconobacter albidus (ex Kondo and Ameyama 1958) Yukphanet al. 2005. In: Validation of publication of new names and new combinations previously published outside the IJSEM, Validation List no. 103. Int. J. Syst. Evol. Microbiol., 55: 983–985.

  • Yukphan P., Malimas T., Takahashi M., Kaneyasu M., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. (2006). Identification of strains assigned to the genus Asaia Yamadaet al. 2000 based on 16S rDNA restriction analysis. J. Gen. Appl. Microbiol., 52: 241–247.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Malimas T., Muramasu Y., Takahashi M., Kaneyasu M., Tanasupawat S., Nakagawa Y., Suzuki K.I., Potacharoen W., Busabun T., Yamada Y. (2008a).Tanticharoenia sakaeratensis gen. nov., sp. nov., a new osmotolerant acetic acid bacterium in the alpha-Proteobacteria. Biosci. Biotechnol. Biochem., 72: 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Yukphan P., Malimas T., Muramatsu Y., Takahashi M., Kaneyasu M., Tanasupawat S., Nakagawa Y., Potacharoen W., Yamada Y. (2008b).Tanticharoenia Yukphanet al. 2008:Tanticharoenia sakaeratensis Yukphanet al. 2008. In: List of new names and new combinations previously effectively, but not validly published, Validation List no. 122. Int. J. Syst. Evol. Microbiol. 58: (In Press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somboon Tanasupawat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kommanee, J., Akaracharanya, A., Tanasupawat, S. et al. Identification ofGluconobacter strains isolated in Thailand based on 16S–23S rRNA gene ITS restriction and 16S rRNA gene sequence analyses. Ann. Microbiol. 58, 741–747 (2008). https://doi.org/10.1007/BF03175584

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03175584

Key words

Navigation