Advertisement

Annals of Microbiology

, 58:677 | Cite as

Optimisation of riboflavin production by the marine yeastCandida membranifaciens subsp.flavinogenie W14-3 using response surface methodology

  • Zhe Chi
  • Lin Wang
  • Liang Ju
  • Zhenming Chi
Industrial Microbiology Original Articles

Abstract

In this study, the optimisation of the process parameters for riboflavin production by the marine yeast strainCandida membranifaciens subsp.flavinogenie W14-3 was carried out using response surface methodology (RSM) based on Central Composite Designs (CCD). We found that the amount of xylose, pH, temperature and shaking speed had great influence on riboflavin production by strain W14-3. Therefore, a response surface design was used to evaluate the influence of the four factors on the riboflavin production. Then, five levels of the four factors above were further optimised using a Central Composite design. Finally, the optimal parameters for the riboflavin production were obtained with RSM. Under the optimised conditions (the production medium containing 2.0% xylose, pH 4.5, temperature 28°C and shaking speed 170 rpm), 22 μg ml−1 of riboflavin was reached in the culture of strain W14-3 within 54 h of fermentation whereas the predicted riboflavin yield of 22 μg ml−1 was derived from RSM regression.

Key words

riboflavin marine yeasts Candida membranifaciens response surface methodology 

References

  1. Boretsky Y.R., Kapustyak K.Y., Fayura L.R., Stasyk O.V., Stenchuk M.M., Bobak Y.P., Drobot L.B., Sibirny A.A. (2005). Positive selection of mutants defective in transcriptional repression of riboflavin synthesis by iron in the flavinogenic yeastPichia guilliermondii. FEMS Yeast Res., 5: 829–837.CrossRefPubMedGoogle Scholar
  2. El-Refal S.S.A.H., Gamati S.Y. (1989). Physiological study on riboflavin production by a hydrocarbon-utilizing culture ofCandida guilliermondii Wickerham. J. Islamic Acad. Sci., 2: 27–30.Google Scholar
  3. Fayura L.R., Fedorovych D.V., Prokopiv T.M., Boretsky Y.R., Sibirny A.A. (2007). The pleiotropic nature ofrib80, hit1, andred6 mutations affecting riboflavin biosynthesis in the yeastPichia guilliermondii. Microbiology, 76: 55–59.CrossRefGoogle Scholar
  4. Kalil S.J., Maugeri F., Rodrigues M.I. (2000). Response surface analysis and stimulation as a tool for bioprocess design and optimization. Process Biochem., 35: 539–550.CrossRefGoogle Scholar
  5. Leathers T.D., Gupta S.C. (1997). Xylitol and riboflavin accumulation in xylose-grown cultures ofPichia guilliermondii. Appl. Microbiol. Biotechnol., 47: 58–61.CrossRefGoogle Scholar
  6. Li X.Y., Liu Z.Q., Chi Z.M. (2008). Production of phytase by a marine yeastKodamaea ohmeri BG3 in an oats medium: Optimization by response surface methodology. Bioresour. Technol., 99: 6386–6390.CrossRefPubMedGoogle Scholar
  7. Plackett R.L., Burman J.P. (1944). The design of optimum multifactorial experiments. Biometrica, 33: 305–325.CrossRefGoogle Scholar
  8. Stahmann P., Revuelta J.L., Seulberge H. (2000). Three biotechnical processesAshbya gossypii, Candida famata orBacillus subtilis compete with using chemical riboflavin production. Appl. Microbiol. Biotechnol., 53: 509–516.CrossRefPubMedGoogle Scholar
  9. Sunitha K., Kim Y.O., Lee J.K., Oh T.K. (2000). Statistical optimization of seed and induction conditions to enhance phytase production by recombinantEscherichia coli. Biochem. Eng. J., 5: 51–56.CrossRefGoogle Scholar
  10. Vohra A., Satyanarayana T. (2002). Statistical optimization of the media components by response surface methodology to enhance phytase production byPichia anomala. Process Biochem., 37: 999–1004.CrossRefGoogle Scholar
  11. Wang L., Chi Z.M., Wang X.H., Ju L., Chi Z., Guo N. (2008). Isolation and characterization ofCandida membranifaciens subsp.flavinogenie W14-3, a novel riboflavin-producing marine yeast. Microbiol. Res., 163: 255–266.CrossRefPubMedGoogle Scholar
  12. Wendland J., Walther A. (2005).Ashbya gossypii: A model for fungal development biology. Nat. Rev. Microbiol., 5: 421–429.CrossRefGoogle Scholar
  13. Wu Q.L., Chen T., Gan Y., Chen X., Zhao X.M. (2007). Optimization of riboflavin production by recombinantBacillus subtilis RH44 using statistical designs. Appl. Microbiol. Biotechnol., 76: 783–794.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Zhe Chi
    • 1
  • Lin Wang
    • 1
  • Liang Ju
    • 1
  • Zhenming Chi
    • 1
  1. 1.Unesco Chinese Center of Marine BiotechnologyOcean University of ChinaQingdaoChina

Personalised recommendations