Advertisement

Annals of Microbiology

, Volume 58, Issue 4, pp 561–568 | Cite as

Characterisation of a psychrotolerant plant growth promotingPseudomonas sp. strain PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas

  • Pankaj K. Mishra
  • Smita Mishra
  • Govindan Selvakumar
  • Shekhar C. Bisht
  • Jaideep K. Bisht
  • Samaresh Kundu
  • Hari Shankar Gupta
Ecological and Environmental Microbiology Original Articles

Abstract

A psychrotolerant, Gram negative, rod shaped, plant growth promoting bacterium (PGPB) was isolated from high altitude of North Western Indian Himalayas. The identity of the bacterium was confirmed by morphological, biochemical and sequencing of the 16S rRNA gene. The sequence analysis revealed maximum similarity withPseudomonas vancouverensis. It exhibited tolerance to a wide pH range (5–12; optimum 7.0) and salt concentrations up to 5% (w/v). The isolate produced 8.33 and 1.38 μg/ml of IAA at 15°C and 4°C respectively, on the third day after incubation. It solubilised 42.3, 66.3 and 74.1 μg/ml of tricalcium phosphate at 4, 15 and 28°C respectively after seven days of incubation. The strain also possessed HCN and siderophore production abilities at 4°C. It exhibited inhibitory activity against several phytopathogenic fungi in three different bioassays. The maximum relative growth inhibition was recorded againstSclerotium rolfsii andRhizoctonia solani (100%), followed byPythium sp. (73.1%) andFusarium oxysporum (19.7%), in volatile compound assays. Seed bacterization with the isolate enhanced the germination of wheat seedlings grown at 18±1°C by 20.3%. Bacterized seeds also recorded 30.2 and 27.5% higher root and shoot length respectively, compared to uninoculated controls.

Key words

antagonistic activity cold tolerant plant growth promotion Pseudomonas sp. strain PGERs17 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alstrom S., Burns R.G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fert. Soils, 7: 232–238.CrossRefGoogle Scholar
  2. Bakker A.W., Schippers B. (1987). Microbial cyanide production in the Rhizosphere in relation to potato yield reduction andPseudomonas spp. mediated plant growth stimulation. Soil Biol. Biochem., 19: 451–457.CrossRefGoogle Scholar
  3. Basu P.S., Ghosh A.C. (1998). Indole acetic acid and its metabolism in root nodules of a monocotyledonous treeRoystonea regia. Curr. Microbiol., 37: 137–140.CrossRefPubMedGoogle Scholar
  4. Behrendt U., Ulrich A., Schumann P., Meyer J. M., Sproer C. (2007).Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int. J. Syst. Evol. Microbiol., 57: 979–985.CrossRefPubMedGoogle Scholar
  5. Bric J.M., Bostock R.M., Silverstone S.R. (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl. Microbiol., 57: 535–538.Google Scholar
  6. Collins C.H., Lyne P.M. (1980). Microbiological Methods. Butterworth and Co. (Publishers) Ltd, London.Google Scholar
  7. Elliot L.F., Lynch J.M. (1984).Pseudomonas as a factor in the growth of winter wheat (Triticum aestivum L.). Soil Biol. Biochem., 16: 69–71.CrossRefGoogle Scholar
  8. Glick B.R., Penrose D.M., Jiping L. (1998). A model for the lowering plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190: 63–68.CrossRefPubMedGoogle Scholar
  9. Gordon S.A., Weber R.P. (1951). Colometric estimation of Indole Acetic Acid. Plant Physiol., 26: 192–195.CrossRefPubMedGoogle Scholar
  10. Greenland D., Losleben M. (2001). Climate. In: Bowman W.D., Seastedt T.R., Eds., Structure and Function of an Alpine Ecosystem Niwot Ridge, Colorado, Oxford University Press, New York, N.Y., pp. 15–31.Google Scholar
  11. Gull F.Y., Hafeez I., Saleem M., Malik K.A. (2004). Phosphorus uptake and growth promotion of chickpea by co-inoculation o fmineral phosphate solubilizing bacteria and a mixed rhizobial culture. Aust. J. Exp. Agric., 44: 623–628.CrossRefGoogle Scholar
  12. Hoagland D.R., Arnon D.I. (1938). The water culture method for growing plants without soil; Circ. Calif. Agric. Exp. Stn. 347 32.Google Scholar
  13. Holt J.G., Kreig N.R., Sneath P.H.A., Stanley J.T., Williams S.T. (1994). Bergey’s Manual of Determinative Bacteriology, 9th edn., The Williams & Wilkins Co, Baltimore, MD.Google Scholar
  14. Huang H.C., Hoes J.A. (1976). Penetration and infection inSclerotium byC. minitans. Can. J. Botany, 54: 406–410.Google Scholar
  15. Katiyar V., Goel R. (2004). Siderophore mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regul., 42: 239–244.CrossRefGoogle Scholar
  16. Kloepper J.W., Schroth M.N. (1978). Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Gilbert-Clarey, Tours, France, pp. 879–882.Google Scholar
  17. Kluepfel D.A. (1993). The behaviour and tracking of bacteria in the rhizosphere. Annu. Rev. Phytopathol., 31: 441–472.CrossRefGoogle Scholar
  18. Lifshitz R., Kloepper J.W., Kozlowski M., Simonson C., Carison J., Tipping E.N., Zaleska I. (1987). Growth promotion of canola (rape-seed) seedlings by a strain ofPeudomonas putida under gnotobiotic conditions. Can. J. Microbiol., 8: 102–106.Google Scholar
  19. Misaghi I.J., Stowell L.J., Grogan R.G., Spearman L.C. (1982). Fungistatic activity of water-soluble fluorescent pigments of fluorescent pseudomonads. Phytopathology, 72: 33–36.CrossRefGoogle Scholar
  20. Mohn W.W., Wilson A.E., Bicho P., Moore E.R.B. (1999). Physiological and phylogenetic diversity of bacteria growing on resin acids. Syst. Appl. Microbiol., 22: 68–78.PubMedGoogle Scholar
  21. Morita R.Y. (1975). Psychrophilic bacteria. Bact. Rev., 39: 144–167.PubMedGoogle Scholar
  22. Murphy J.P., Riley J.P. (1962). A modified single solution method for the determination of the phosphate in natural waters. Anal. Chem. Acta, 27: 31–36.CrossRefGoogle Scholar
  23. Neilands J.B. (1986). Microbial iron compounds. Annu. Rev. Biochem., 50: 715–731.CrossRefGoogle Scholar
  24. Neilands J.B., Konopka K., Schwyn B., Coy M., Francis R.T., Paw B.H., Bagg A. (1987). Comparative biochemistry of microbial iron assimilation, In: Winkelmann G., Van der Helm D., Neilands J.B., Eds, Iron Transport in Microbes, Plants and Animals, Verlagsgescellschaft mbh. Weinheim, pp. 3–33.Google Scholar
  25. Palleroni N.J., Doudoroff M. (1972). Some properties and taxonomic subdivisions of genusPseudomonas. Annu. Rev. Phytopathol., 10: 73–100.CrossRefGoogle Scholar
  26. Palleroni N.J. (1992). Introduction to the family Pseudomonadaceae. In: Balows A., Truper H., Dworkin M., Harder W., Schleifer K.H., Eds, The Prokaryotes, 2nd edn., vol. 1, Springer-Verlag, New York, N.Y., pp. 3071–3079.Google Scholar
  27. Pandey A., Palni L.M.S. (1998). Isolation ofPseudomonas corrugata from Sikkim Himalaya. World J. Microbiol. Biotechnol., 14: 411–413.CrossRefGoogle Scholar
  28. Pandey A., Durgapal A., Joshi M., Palni L.M.S. (1999). Influence ofPseudomonas corrugata inoculation on root colonization and growth promotion of two important hill crops. Microbiol. Res., 154: 259–266.Google Scholar
  29. Pandey A., Trivedi P., Kumar B., Palni L.M.S. (2006). Characterization of a phosphate solubilizing and antagonistic strain ofPseudomonas putida (B0) isolated from a sub-alpine location in the Indian Central Himalaya. Curr. Microbiol., 53: 102–107.CrossRefPubMedGoogle Scholar
  30. Patten C.L., Glick B.R. (2002). Role ofPseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol., 68: 3795–3801.CrossRefPubMedGoogle Scholar
  31. Perrire G., Gouy M. (1996). WWW-query: an on-line retrieval system for biological sequence banks. Biochimie, 78: 364–369.CrossRefGoogle Scholar
  32. Pikovskaya R.I. (1948). Mobilization of the phosphorous in soil in connection with the vital activity of some microbial sp. Mikrobiologiya, 17: 362–370.Google Scholar
  33. Podile A.P., Kishore K.G. (2006). Plant growth promoting Rhizobacteria. In: Gnanamanickam S.S., Ed., Plant Associated Bacteria, Springer, Netherlands, pp. 195–230.CrossRefGoogle Scholar
  34. Premono M.E., Moawad A.M., Vlek P.L.G. (1996). Effect of phosphate-solubilizingPseudomonas Psychrophilic bacteria. Bact. Rev., 39: 144–167.Google Scholar
  35. Saitou N., Nei M. (1987). The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4: 406–425.PubMedGoogle Scholar
  36. Sangeeta M., Shekhar N.C. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Curr. Microbiol., 43: 51–56.CrossRefGoogle Scholar
  37. Schillinger U., Lucke F.K. (1989). Antibacterial activity ofLactobacillus stain isolated from meat. Appl. Environ. Microbiol., 55: 1901–1906.PubMedGoogle Scholar
  38. Schwyn B., Neilands J. (1987). Universal assay for detection and determination of siderophores. Anal. Biochem., 160: 47–56.CrossRefPubMedGoogle Scholar
  39. Selvakumar G., Kundu S., Joshi P., Nazim S., Gupta A.D., Mishra P.K., Gupta H.S. (2008a). Characterization of a cold-tolerant plant growth-promoting bacteriumPantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J. Microbiol. Biotechnol., 24: 955–960.CrossRefGoogle Scholar
  40. Selvakumar G., Mohan M., Kundu S., Gupta A.D., Joshi P., Nazim S., Gupta H.S. (2008b). Cold tolerance and plant growth promotion potential ofSerratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett. Appl. Microbiol., 46: 171–175.PubMedCrossRefGoogle Scholar
  41. Shivaji S., Chaturvedi P., Reddy G.S.N., Suresh K. (2005).Pedobacter himalayensis sp. nov., from Hamta glacier located in the Himalayan mountain range in India. Int. J. Syst. Evol. Microbiol., 55: 1083–1088.CrossRefPubMedGoogle Scholar
  42. Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. (1997). The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools; Nucleic Acids Res., 25: 4876–4882.CrossRefPubMedGoogle Scholar
  43. Tilak K.V.B.R., Ranganayaki N., Pal K.K., De R., Saxena A.K., Nautiyal C., Shekhar M.S., Tripathi A.K., Johri B.N. (2005). Diversity of plant growth and soil supporting bacteria. Curr. Sci., 89: 136–150.Google Scholar
  44. Trivedi P., Pandey A., Palni L.M.S., Bag N., Tamang M.B. (2005). Colonization of rhizosphere of tea by growth promoting bacteria. Int. J. Tea Sci., 4: 19–25.Google Scholar
  45. Valverde A., Burgos A., Fiscella T., Rivas R., Velazquez E., Rodriguez-Barrueco C., Cervantes E., Chamber M., Igual J.M. (2006). Differential effects of coinoculations withPseudomonas jessenii PS06 (a phosphate-solubilizing bacterium) andMesorhizobium ciceri C-2/2 strains on the growth and seed yield of chickpea under greenhouse and field conditions. Plant Soil, 287: 43–50.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Pankaj K. Mishra
    • 1
  • Smita Mishra
    • 1
  • Govindan Selvakumar
    • 1
  • Shekhar C. Bisht
    • 1
  • Jaideep K. Bisht
    • 1
  • Samaresh Kundu
    • 2
  • Hari Shankar Gupta
    • 1
  1. 1.Vivekananda Institute of Hill Agriculture(Indian Council of Agricultural Research)AlmoraIndia
  2. 2.Indian Institute of Soil Science(Indian Council of Agricultural Research)BhopalIndia

Personalised recommendations