Advertisement

Annals of Microbiology

, 58:443 | Cite as

Production and GC-MS trace analysis of methyl eugenol from endophytic isolate ofAlternaria from rose

  • Sanjana Kaul
  • Masood Wani
  • Kanyaha Lal Dhar
  • Manoj K. Dhar
Ecological and Environmental Microbiology Research Note

Abstract

A total of fifty-four endophytic fungi were isolated from living symptomless leaves, stem and petals ofRosa damascaena Mill. (Rose). Rose is commercially exploited for the essential oil which is used in flavour and fragrances. Methyl eugenol [1,2-dimethoxy 4-(2-propenyl) benzene] constitutes about 1.9% composition of the rose oil and also acts as a precursor for the synthesis of methyl DOPA an important vasodilator. Besides this, it is an important bioactive compound with wide range of applications in pharmaceutical and flavouring industries. So far, methyl eugenol has been extracted either from rose oil or synthesized. During the present investigation GC-MS revealed the production of methyl eugenol by anAlternaria species isolated as an endophyte of cultivated and wild rose. The present work indicates that endophytes not only duplicate the secondary metabolite composition of host plant but can also serve as important tool for the preservation of biodiversity.

Key words

TLC GC/MS endophytes Rose methyl eugenol organic volatiles 

References

  1. Bills G., Dombrowski A., Pelaiz A., Polishook J. (2002). Recent and future discoveries of pharmacologically active metabolites from tropical fungi. In: Walting R., Franklin J.C., Tropical Mycology: Mictomycetes, CABI Publishing, New York, pp. 165–194.Google Scholar
  2. Bryn H.D., Strobel G.A., Castilla U., Ezra D., Sears J., Weaver D.K., Runyan B.J. (2002). Napthelene an insect repellent produced byMuscoder vitigenus, a novel endophytic fungus. Microbiology, 148: 3737–3741.Google Scholar
  3. Bouwmeester H.J. (2006). Engineering the essence of plants. Nat. Biotech., 24: 1361.CrossRefGoogle Scholar
  4. Dryfuss M.M., Chapela I.M. (1994). Potential of fungi in the discovery of novel low molecular weight pharmaceutical. Butterworth Heinemann, London, United Kingdom, pp. 49–80.Google Scholar
  5. Gentile A., Rossi M.S., Cabral C., Craven K.D., Schardl C.L. (2005). Origin, divergence and phylogeny of epiochloe endophytes of native argentine grass. Mol. Phy. Evol., 35: 196–208.CrossRefGoogle Scholar
  6. Hu M.Y., Zhong G.H., Sun Z.T., Sh G., Liu H.M., Liu X.Q. (2005). Insecticidal activities of secondary metabolites of endophyticPenicillium inDerris elliptica Benth. J. Appl. Entomol., 129: 413–417.CrossRefGoogle Scholar
  7. Raviraja N.S. (2005). Fungal endophytes in five medicinal plant species from Kudremukh range, Western Ghats of India. J. Basic Microbiol., 3: 230–235.CrossRefGoogle Scholar
  8. Santos R.M.G., Rodrigues-Fo E., Rocha W.C., Teixeira M.F.S. (2003). Endophytic fungi fromMelia azadirchta. World J. Microbiol. Biotech., 19: 767–770.CrossRefGoogle Scholar
  9. Shelly T., Resilva S., Reyes M., Bignayan H. (1996). Feeding on methyl eugenol andFagraea berteriana flowers increases long-range female attraction by males of the oriental fruit fly (diptera: Tephritidae) Flor. Entomol., 79: 481–488.Google Scholar
  10. Sieber T.N., Canavesk F., Darworth C.E. (1991). Endophytic fungi of red alder (Alnus rubera) leaves and twigs in British Columbia. Can. J. Bot., 69: 407–411.CrossRefGoogle Scholar
  11. Siegel M.R., Latch G.C., Johnson M.C. (1985).Acremonium fungal endophytes of Tall fescue and perennial Ryegrass. Plant Dis., 69: 179–183.Google Scholar
  12. Stierle A., Strobel G., Stierle D. (1993). Taxol and taxane production byTaxomyces andreanae, an endophytic fungus of pacific yew. Science 260: 214–216.CrossRefPubMedGoogle Scholar
  13. Stone R. (1993). Surprise. A Fungal factory of Taxol? Science, 260: 154–155.CrossRefPubMedGoogle Scholar
  14. Stone R. (2001). Volatile metabolites of endophytes. Microbiology, 139: 134–140.Google Scholar
  15. Strobel G.A., Dirksie E., Sears J., Marksworth C. (2001). Volatile antimicrobials fromMuscodor albus a novel endophytic fungus. Microbiology, 147: 2943–2950.PubMedGoogle Scholar
  16. Tan R.X., Zou W.X. (2001). Endophyte a rich source of functional metabolites. Nat. Prod. Rep., 18: 448–459.CrossRefPubMedGoogle Scholar
  17. Vega E., Posada F., Peterson S.W., Gianfagna T.J., Chaves F. (2006).Penicillium species endophytic in coffee plants and ochratoxin A production. Mycologia, 98: 31–42.CrossRefPubMedGoogle Scholar
  18. Wani M. (2005). Molecular and metabolite profiling of fungal endophytes of Rose. M. Phil Dissertation, University of Jammu, Jammu, J & K, IndiaGoogle Scholar
  19. Zhang H.W., Song Y.C., Tan R.X. (2006). Biology and chemistry of endophytes. Nat. Prod. Rep., 23: 753–771.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Sanjana Kaul
    • 1
  • Masood Wani
    • 1
  • Kanyaha Lal Dhar
    • 1
  • Manoj K. Dhar
    • 1
  1. 1.Department of BiotechnologyUniversity of JammuJammuIndia

Personalised recommendations