Advertisement

Annals of Microbiology

, Volume 57, Issue 4, pp 599–607 | Cite as

Development and characterisation of a recombinantSaccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties

  • Vasudevan Thanvanthri Gururajan
  • Piere Van Rensburg
  • Bärbel Hahn-Hägerdal
  • Isak S. Pretorius
  • Ricardo R. Cordero Otero
Industrial Microbiology Original Articles

Abstract

The purpose of this study was to help lay the foundation for further development of xylose-fermentingSaccharomyces cerevisiae yeast strains through an approach that combined metabolic engineering and random mutagenesis in a recombinant haploid strain that overexpressed only two genes of the xylose pathway. Previously,S. cerevisiae strains, overexpressing heterologous genes encoding xylose reductase, xylitol dehydrogenase and the endogenousXKS1 xylulokinase gene, were randomly mutagenised to develop improved xylose-fermenting strains. In this study, two gene cassettes (ADH1 p -PsXYL1-ADH1 T andPGK1 p -PsXYL2-PGK1 T ) containing the xylose reductase (PsXYL1) and xylitol dehydrogenase (PsXYL2) genes from the xylose-fermenting yeast,Pichia stipitis, were integrated into the genome of a haploidS. cerevisiae strain (CEN.PK 2-1D). The resulting recombinant strain (YUSM 1001) over-expressing theP. stipitis XYL1 andXYL2 genes (but not the endogenousXKS1 gene) was subjected to ethyl methane sulfonate (EMS) mutagenesis. The resulting mutants were screened for faster growth rates on an agar medium containing xylose as the sole carbon source. A mutant strain (designated Y-X) that showed 20-fold faster growth in xylose medium in shake-flask cultures was isolated and characterised. In anaerobic batch fermentation, the Y-X mutant strain consumed 2.5-times more xylose than the YUSM 1001 parental strain and also produced more ethanol and glycerol. The xylitol yield from the mutant strain was lower than that from the parental strain, which did not produce glycerol and ethanol from xylose. The mutant also showed a 50% reduction in glucose consumption rate. Transcript levels ofXYL1, XYL2 andXKS1 and theGPD2 glycerol 3-phosphate dehydrogenase gene from the two strains were compared with real-time reverse transcription polymerase chain reaction (RT-PCR) analysis. The mutant showed 10–40 times higher relative expression of these four genes, which corresponded with either the higher activities of their encoded enzymes or by-product formation during fermentation. Furthermore, no mutations were observed in the mutant’s promoter sequences or the open reading frames of some of its key genes involved in carbon catabolite repression, glycerol production and redox balancing. The data suggest that the enhancement of the xylose fermentation properties of the Y-X mutant was made possible by increased expression of the xylose pathway genes, especially theXKS1 xylulokinase gene.

Key words

mutagenesis xylose fermentation xylulokinase xylitol dehydrogenase xylose reductase XKS1 XYL1 XYL2 Saccharomyces cerevisiae yeast 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansell R., Granath K., Hohmann S., Thevelein J.M., Adler L. (1997). The two isoenzymes for yeast NAD+-dependent glycerol-3-phosphate dehydrogenase encoded byGPD1 andGPD2 have distinct roles in osmo-adaptation and redox regulation. EMBO J., 16: 128–132.CrossRefGoogle Scholar
  2. Attfield P.V., Bell P.J. (2006). Use of population genetics to derive nonrecombinantSaccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res., 6: 862–868.CrossRefPubMedGoogle Scholar
  3. Ausubel F.M., Brent R., Kingson R.E., Moore D.D., Seidman J.G., Smity J.A., Struhl K. (1995). Current Protocols in Molecular Biology. John Wiley and Sons, New York, USA.Google Scholar
  4. Bailey J.E., (1991). Toward a science of metabolic engineering. Science, 252:1668–1675.CrossRefPubMedGoogle Scholar
  5. Bakker B.M., Overkamp K.M., van Maris A.J., Kötter P., Luttik M.A., van Dijken J.P., Pronk J.T. (2001). Stoichiometry and compartmentation of NADH metabolism inSaccharomyces cerevisiae. FEMS Microbiol. Rev., 25: 15–37.CrossRefPubMedGoogle Scholar
  6. Björkqvist S., Ansell R., Adler L., Lidén G. (1997). Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants ofSaccharomyces cerevisiae. Appl. Environ. Microbiol., 63: 128–132.PubMedGoogle Scholar
  7. Bleve G., Rizzotti L., Dellaglio F., Torrian, S. (2003). Development of reverse-transcription (RT)-PCR and real time RT-PCR assays for rapid detection and quantification of viable yeasts and molds contaminating yogurts and pasteurized food products. Appl. Environ. Microbiol., 69: 4116–4122.CrossRefPubMedGoogle Scholar
  8. Bruinenberg P.M., de Bot P.H.M., van Dijken J.P., Scheffers W.A. (1984). NADH-linked aldose reductase: the key to anaerobic alcoholic fermentation of xylose by yeasts. Appl. Microbiol. Biotechnol., 19: 256–260.CrossRefGoogle Scholar
  9. Chiang L.C., Gong C.S., Chen L.F., Tsao G. (1981). D-Xylulose fermentation bySaccharomyces cerevisiae. Appl. Environ. Microbiol., 42: 284–289.PubMedGoogle Scholar
  10. Christensen L.H., Schulze U., Nielsen J., Villadsen J. (1995). Acoustic off-gas analyzer for bioreactors: precision, accuracy and dynamics of detection. Chem. Eng. Sci., 50: 2601–2610.CrossRefGoogle Scholar
  11. Divol B., Miot-Sertier C., Lonvaud-Funel A. (2006). Genetic characterization of strains ofSaccharomyces cerevisiae responsible for ‘refermentation’ inBotrytis-affected wines. J. Appl. Microbiol., 100: 516–526.CrossRefPubMedGoogle Scholar
  12. Eliasson A., Christensson C., Wahlbom C.F., Hahn-Hägerdal B. (2000). Anaerobic xylose fermentation by recombinantSaccharomyces cerevisiae carryingXYL1, XYL2, andXKS1 in mineral medium chemostat cultures. Appl. Environ. Microbiol., 66: 3381–3386.CrossRefPubMedGoogle Scholar
  13. Eliasson A., Hofmeyr J-H. S., Pedler S., Hahn-Hägerdal B. (2001). The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xyloseutilisingSaccharomyces cerevisiae. Enzyme Microb. Technol., 29: 288–297.CrossRefGoogle Scholar
  14. Entian K.D., Kötter P. (1998). Yeast mutant and plasmid collections. In: Brown A.J.P., Tuite M.F., Eds, Yeast Gene Analysis, Vol. 26, Academic Press, London, United Kingdom, pp. 431–449.CrossRefGoogle Scholar
  15. Gietz D., St. Jean A., Woods R.A., Schiestl R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res., 20: 1425.CrossRefPubMedGoogle Scholar
  16. Giuletti A., Overbergh L., Valckx D., Decallonne B., Bouillon R., Mathieu C. (2001). An overview of real-time quantitative PCR: applications to quantify cytokine gene expression. Methods, 25: 386–401.CrossRefGoogle Scholar
  17. Hallborn J., Walfridsson M., Airaksinen U., Ojamo H. Hahn-Hägerdal B., Penttilä M., Keränen S. (1991). Xylitol production by recombinantSaccharomyces cerevisiae. Biotechnology, 9: 1090–1095.CrossRefPubMedGoogle Scholar
  18. Ho N.W., Chen Z., Brainard A.P. (1998). Genetically engineeredSaccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl. Environ. Microbiol., 64: 1852–1859.PubMedGoogle Scholar
  19. Jeppsson H., Yu S., Hahn-Hägerdal B. (1996). Xylulose and glucose fermentation bySaccharomyces cerevisiae in chemostat culture. Appl. Environ. Microbiol., 62: 1705–1709.PubMedGoogle Scholar
  20. Jeppsson M., Träff K., Johansson B., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinantSaccharomyces cerevisiae. FEMS Yeast Res., 3: 167–175.CrossRefPubMedGoogle Scholar
  21. Jin Y.S., Ni H., Laplaza J.M., Jeffries T.W. (2003). Optimal growth and ethanol production from xylose by recombinantSaccharomyces cerevisiae require moderate D-xylulokinase activity. Appl. Environ. Microbiol., 69: 495–503.CrossRefPubMedGoogle Scholar
  22. Johansson B., Christensson C., Hobley T., Hahn-Hägerdal B. (2001). Xylulokinase overexpression in two strains ofSaccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl. Environ. Microbiol., 67: 4249–4255.CrossRefPubMedGoogle Scholar
  23. Karhumaa K., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinantSaccharomyces cerevisiae using metabolic engineering. Yeast, 22: 359–368.CrossRefPubMedGoogle Scholar
  24. Karhumaa K., Fromanger R., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinantSaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 73: 1039–1046.CrossRefPubMedGoogle Scholar
  25. Kostrzynska M., Sopher C.R., Lee H. (1998). Mutational analysis of the role of the conserved lysine-270 in thePichia stipitis xylose reductase. FEMS Microbiol. Lett., 159: 107–112.CrossRefPubMedGoogle Scholar
  26. Kötter P., Amore R., Hollenberg C.P., Ciriacy M. (1990). Isolation and characterization of thePichia stipitis xylitol dehydrogenase gene,XYL2, and construction of a xylose-utilizingSaccharomyces cerevisiae transformant. Curr. Genet., 18: 463–500.CrossRefGoogle Scholar
  27. Kötter P., Ciriacy M. (1993). Xylose fermentation bySaccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 38: 776–783.CrossRefGoogle Scholar
  28. Kuyper M., Winkler A.A., van Dijken J.P., Pronk J.T. (2004). Minimal metabolic engineering ofSaccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle? FEMS Yeast Res., 4: 655–664.CrossRefPubMedGoogle Scholar
  29. Lynd L.R. (1996). Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment, and policy. Annu. Rev. Energy. Environ., 21: 403–465.CrossRefGoogle Scholar
  30. Lynd L.R., Weimer P.J., van Zyl W.H., Pretorius I.S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol. Mol. Biol. Rev., 66: 506–577.CrossRefPubMedGoogle Scholar
  31. Pfaffl M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29: 2002–2007.CrossRefGoogle Scholar
  32. Ramakers C., Ruijter J.M., Deprez R.H., Moorman A.F. (2003). Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci. Lett., 339: 62–66.CrossRefPubMedGoogle Scholar
  33. Richard P., Toivari M.H., Penttilä M. (2000). The role of xylulokinase inSaccharomyces cerevisiae xylulose catabolism. FEMS Microbiol. Lett., 190: 39–43.CrossRefPubMedGoogle Scholar
  34. Rigoulet M., Aguilaniu H., Avéret N., Bunoust O., Camougrand N., Grandier-Vazeille X., Larsson C., Pahlman I-L., Manon S., Gustafsson L. (2004) Organization and regulation of the cytosolic NADH metabolism in the yeastSaccharomyces cerevisiae. Mol. Cell. Biochem., 256/257: 73–81.CrossRefGoogle Scholar
  35. Rizzi M., Erlemann P., Bui-Thanh N.-A., Dellweg H. (1988). Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase fromPichia stipitis. Appl. Microbiol. Biotechnol., 29: 148–154.CrossRefGoogle Scholar
  36. Rizzi M., Harwart K., Erlemann P., Bui-Thahn N.-A., Dellweg. H. (1989). Purification and properties of the NAD+-xylitol-dehydrogenase from the yeastPichia stipitis. J. Ferment. Bioeng., 67: 20–24.CrossRefGoogle Scholar
  37. Rozen S., Skaletsky H.J. (2000). Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S., Misener S., Eds, Bioinformatics Methods and Protocols: Methods in Molecular Biology, Humana Press, Totowa, NJ, pp. 365–386.Google Scholar
  38. Salusjärvi L., Poutanen M., Pitkänen J.P., Koivistoinen H., Aristidou A., Kalkkinen N., Ruohonen L., Penttilä M. (2003). Proteome analysis of recombinant xylose-fermentingSaccharomyces cerevisiae. Yeast, 20: 295–314.CrossRefPubMedGoogle Scholar
  39. Sauer U. (2001). Evolutionary engineering of industrially important microbial phenotypes. Adv. Biochem. Eng. Biotechnol., 73: 129–169.PubMedGoogle Scholar
  40. Senac T., Hahn-Hägerdal B. (1990). Intermediary metabolite concentrations in xylulose- and glucose-fermentingSaccharomyces cerevisiae cells. Appl. Environ. Microbiol., 56: 120–126.PubMedGoogle Scholar
  41. Sherman F., Fink G.R., Hicks J. (1991). Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.Google Scholar
  42. Sonderegger M., Sauer U. (2003). Evolutionary engineering ofSaccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol., 69: 1990–1998.CrossRefPubMedGoogle Scholar
  43. Sonderegger M., Jeppsson M., Hahn-Hägerdal B., Sauer U. (2004). Molecular basis for anaerobic growth ofSaccharomyces cerevisiae on xylose, investigated by global gene expression and metabolic flux analysis. Appl. Environ. Microbiol., 70: 2307–2317.CrossRefPubMedGoogle Scholar
  44. Tantirungkij M., Nakashima N., Seki T., Yoshida T. (1993). Construction of xylose-assimilatingSaccharomyces cerevisiae. J. Ferment. Bioeng., 75: 83–88.CrossRefGoogle Scholar
  45. Thanvanthri Gururajan V., Pretorius I.S., Cordero Otero R.R. (2007). Molecular cloning and functional expression of a novelNeurospora crassa xylose reductase inSaccharomyces cerevisiae in the development of a xylose fermenting strain. Ann. Microbiol., 57 (1): 223–231.CrossRefGoogle Scholar
  46. Toivari M.H., Aristidou A., Rouhonen L., Penttilä M. (2001). Conversion of xylose to ethanol by recombinantSaccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metabol. Eng., 3: 236–249.CrossRefGoogle Scholar
  47. Toivari M.H., Salusjärvi L., Ruohonen L., Penttilä M. (2004). Endogenous xylose pathway inSaccharomyces cerevisiae. Appl. Environ. Microbiol., 70: 3681–3686.CrossRefPubMedGoogle Scholar
  48. Träff K.L., Jonsson L.J., Hahn-Hägerdal B. (2002). Putative xylose and arabinose reductases inSaccharomyces cerevisiae. Yeast, 19: 1233–1241.CrossRefPubMedGoogle Scholar
  49. Träff-Bjerre K.L., Jeppsson M., Hahn-Hägerdal B., Gorwa-Grauslund M-F. (2004). Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinantSaccharomyces cerevisiae. Yeast, 21: 141–150.CrossRefPubMedGoogle Scholar
  50. Valadi A., Granath K., Gustafsson L., Adler L. (2004). Distinct intracellular localization of Gpd1p and Gpd2p, the two yeast isoforms of NAD+-dependent glycerol-3-phosphate dehydrogenase, explains their different contributions to redox-driven glycerol production. J. Biol. Chem., 279: 39677–39685.CrossRefPubMedGoogle Scholar
  51. Verduyn C., van Kleef R., Frank J., Schreuder H., van Dijken J.P., Scheffers W.A. (1985). Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeastPichia stipitis. Biochem. J., 226: 664–677.Google Scholar
  52. Verduyn C., Postma E., Scheffers W.A., van Dijken J.P. (1992). Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast, 8: 501–517.CrossRefPubMedGoogle Scholar
  53. Wahlbom C.F., van Zyl W.H., Jonsson L.J., Hahn-Hägerdal B., Otero R.R. (2003a). Generation of the improved recombinant xylose-utilizingSaccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison withPichia stipitis CBS 6054. FEMS Yeast Res., 3: 319–326.CrossRefPubMedGoogle Scholar
  54. Wahlbom C.F., Cordero Otero R.R., van Zyl W.H., Hahn-Hägerdal B., Jonsson L.J. (2003b). Molecular analysis of aSaccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the pentose phosphate pathway. Appl. Environ. Microbiol., 69: 740–746.CrossRefPubMedGoogle Scholar
  55. Walfridsson M., Anderlund M., Bao X., Hahn-Hägerdal B. (1997). Expression of different levels of enzymes fromPichia stipitis XYL1 andXYL2 genes inSaccharomyces cerevisiae and its effects on product formation during xylose utilization. Appl. Microbiol. Biotechnol., 48: 218–224.CrossRefPubMedGoogle Scholar
  56. Wang P.Y., Schneider H. (1980). Growth of yeasts on D-xylulose 1. Can. J. Microbiol., 26: 1165–1168PubMedCrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  • Vasudevan Thanvanthri Gururajan
    • 1
  • Piere Van Rensburg
    • 1
  • Bärbel Hahn-Hägerdal
    • 2
  • Isak S. Pretorius
    • 1
    • 3
  • Ricardo R. Cordero Otero
    • 1
  1. 1.Institute for Wine BiotechnologyStellebosch UniversityStellenboschSouth Africa
  2. 2.Department of Applied MicrobiologyLund UniversityLundSweden
  3. 3.The Australian Wine Research InstituteGlen Osmond, AdelaideAustralia

Personalised recommendations