Annals of Microbiology

, Volume 58, Issue 2, pp 233–238 | Cite as

Expression of recombinantPichia pastoris X33 phytase for dephosphorylation of rice bran fermented liquid

  • Ming-Hui Chang
  • Chiu-Chung Young
  • Shiuan-Yuh Chien
  • A. B. Arun
Industrial Microbiology Original Articles


TheAspergillus ficuum phytase genephyA was overexpressed inPichia pastoris X33 after replacing Buffered glycerol-complex medium (BMGY medium) using 1% (v/v) glycerol with fresh Buffered methanol-complex medium (BMMY medium) using 1% (v/v) methanol (on daily basis) as carbon sources. The phytase activity increased evidently with the induction time, and reached 200 U mL−1 after 9 days of induction. We examined the possibility of employing thus obtained phytase to recover phosphorus from the fermented liquid of rice bran. When the 0.1 M sodium acetate buffer was replaced with de-ionised water (pH 5.5±0.1) as an enzyme reaction solution, there was an increase in the phosphorus recovery with respect to time and reached 1.31% after 24 h incubation contributing to 81% release of inorganic P from the rice bran phytate. Studies on hydrolysis of rice bran phytate by the addition of different concentrations of phytase ranging from 0–200 U mL−1 produced through the recombinant yeast shows no significant effect in the rate of phytate hydrolysis at enzyme activities of 200, 100, 50 U mL−1. However, rate of hydrolysis varied significantly at 20, 5, 0 U mL−1 enzyme concentrations.

Key words

phytase Pichia pastoris X33 phosphorus rice bran SDS-PAGE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bae H.D., Yanke L.J., Cheng K.J., Selinger L.B. (1999). A novel staining method for detecting phytase activity. J. Microbiol. Methods, 39: 17–22.CrossRefPubMedGoogle Scholar
  2. Chen C.C., Wu P.H., Huang C.T., Cheng K.J. (2004). APichia pastoris fermentation strategy for enhancing the heterologous expression of anEscherichia coli phytase. Enzyme Microbiol. Technol., 35: 315–320.CrossRefGoogle Scholar
  3. Erdman L.W., Poneros S.K. (1989). Phytic acid interaction with divalent cations in foods and in the gastrointestinal tract. Adv. Exp. Med. Biol., 249:161–171.PubMedGoogle Scholar
  4. Han Y., Lei X.G. (1999). Role of glycosylation in functional expression of anAspergillus niger phytase (phyA) inPichia pastoris. Arch. Biochem. Biophys., 364:83–90.CrossRefPubMedGoogle Scholar
  5. Han W.Y., Wilfred, A.G. (1988). Phytate hydrolysis in soybean and cottonseed meals byAspergillus ficuum phytase. J. Agric. Food Chem., 36:259–262.CrossRefGoogle Scholar
  6. Haefner S., Knietsch A., Scholten E., Braun J., Lohscheidt M., Zelder O. (2005). Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol., 68:588–597.CrossRefPubMedGoogle Scholar
  7. Howson S. J., Davis R. P. (1983). Production of phytate-hydrolysing enzyme by some fungi, Enzyme Microb. Technol., 5:377–382.CrossRefGoogle Scholar
  8. Lei X.G., Ku P.K., Miller E.R., Yokoyama M.T. (1993). Supplementing corn-soybean meal diets with microbial linearly improves phytate P utilization by weanling pigs. J. Anim. Sci., 71: 3359–3367.PubMedGoogle Scholar
  9. Maga J.A. (1982). Phytate: its chemistry, occurrence, food interactions, nutritional significance, and methods of analysis. J. Agric. Food Chem., 30:1–9.CrossRefGoogle Scholar
  10. Mayer A.F., Hellmuth K., Schlieker H., Lopez-Ulibarri Oertel R.S., Dahlems U., Strasser A. W. M., van Loon A. P. G. M. (1999). An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains ofHansenula polymorpha. Biotech. Bioeng., 63:373–381.CrossRefGoogle Scholar
  11. Reddy N.R., Sathe S.K., Salunkhe D.K., (1982). Phytates in legumes and cereals. Adv. Food Res., 28:1–92.PubMedGoogle Scholar
  12. Rimbach G.H., Ingelmann J., Pallauf J. (1994). The role of phytase in the dietary bioavailability of minerals and trace elements. Ernahrungsforschung. 39:1–10.Google Scholar
  13. Shieh E.T., Ware J.H. (1968). Survey of microorganisms for the production of extracellular phytase. Appl Microbiol., 16:1348–1351.PubMedGoogle Scholar
  14. Shimizu M. (1992). Purification and characterization of phytase fromBacillus subtilis (natto) N-77. Biosci. Biotechnol. Biochem., 56:1266–1269.CrossRefGoogle Scholar
  15. Quan C.L., Zhang Y., Wang Y., Ohta Y. (2001). Production of phytase in low phosphate medium by a novel yeastCandida krusei. J. Biosci. Bioeng., 92:154–160.CrossRefPubMedGoogle Scholar
  16. Ullah A.H.J., Sethumadhavan K. (2003).PhyA gene product ofAspergillus ficuum andPeniophora lycii produces dissimilar phytases. Biochem. Biophy. Res. Commun., 303: 463–468.CrossRefGoogle Scholar
  17. Van Hartingsveldt W., van Zeijl C.M.J.G.M., Harteveld M., Gouka R.J., Guykerbuyk Luiten M.E.G., van Paridon R.G.M.M., Selten G.C., Veenstra A.E., van Gorcom R.F.M., van den Hondel C.A.M.J.J. (1993). Cloning, characterization and expression of the phytase-encoding genephyA ofAspergillus niger. Gene. 127; 87–94.CrossRefPubMedGoogle Scholar
  18. Zhang Y., Liu R., Wu X. (2007). The proteolytic systems and heterologous proteins degradation in the methylotrophic yeastPichia pastoris. Ann. Microbiol., 57: 553–560.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Ming-Hui Chang
    • 1
  • Chiu-Chung Young
    • 2
  • Shiuan-Yuh Chien
    • 1
  • A. B. Arun
    • 2
  1. 1.Agricultural Chemistry DivisionAgricultural Research InstituteTaichungTaiwan
  2. 2.College of Agriculture and Natural Resources, Department of Soil and Environmental SciencesNational Chung Hsing UniversityTaichungTaiwan, ROC

Personalised recommendations