Advertisement

Annals of Microbiology

, 58:203 | Cite as

Environmental and clinicalPseudomonas isolates antagonistic against the dermatophytesTrichophyton andMicrosporum

  • Amel Cherif
  • Dalinda El Euch
  • Nadia Bessaied
  • Amel Ben Osman Dhahri
  • Abdellatif Boudabous
  • Najla Sadfi-Zouaoui
Ecological and Environmental Microbiology Research Note

Abstract

Dermatomycoses are common and persistent fungal infections in Tunisia. A collection ofPseudomonas isolates from marine environments and clinical patients was testedin vitro against the dermatophytes:Trichophyton rubrum, Trichophyton interdigitale andMicrosporum canis. The isolatesP. aeruginosa andP. fluorescens showed antagonistic activity againstT. rubrum with fungal growth reduction ranging from 76 to 97.5%. The antifungal compounds of the marine isolate PsMBA-3 ofP. aeruginosa, was found in the filtered sonicate of the culture pellet (55%) and in the filtered supernatant (21%). More studies including, characterisation tests, purification and structural elucidation of anti-dermatophytic metabolites fromP. aeruginosa PsMBA-3, are needed

Key words

dermatomycoses antifungal activity Pseudomonas dermatophytes 

References

  1. Bangera M.G., Thomashow L.S. (1996). Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylpholoroglucinol by the biological control agentPseudomonas fluorescens Q2-87. Mol. Plant-Microbe Inter., 9: 83–90.Google Scholar
  2. Dowling D.N., O’Gara F. (1994). Metabolites ofPseudomonas involved in the biocontrol of plant disease. Trends Biotechnol., 12: 133–141.CrossRefGoogle Scholar
  3. Effendy I., Lecha M., Feuilhade de Chauvin M., Di Chiacchio N., Baran R. (2005). Epidemiology and clinical classification of onychomycosis. J. Eur. Acad. Dermatol. Vener., 19: 8–12.CrossRefGoogle Scholar
  4. El Euch D., Ben Ammar F., Ben Sassi M., Mokni M., Melini S., Abidi H., Ben Osman Dhahri A. (2006). Epidemiological, clinical and mycological study over three years period. Tunisie Méd., 84: 407–410.PubMedGoogle Scholar
  5. Folders J., Algra J., Roelofs M.S., Loon L.C., Tommassen J., Bitter W. (2001). Characterization ofPseudomonas aeruginosa chitinase, a gradually secreted protein. J. Bacteriol., 183: 7044–7052.CrossRefPubMedGoogle Scholar
  6. Fostel J., Lartey P. (2000). Emerging novel antifungal agents. Drug Discov. Today, 5: 25–32.CrossRefPubMedGoogle Scholar
  7. Kane J., Summerbell R., Sigler S.et al. (1997). Laboratory Handbook of Dermatophytes. Star Publishing Co., Belmont, CA.Google Scholar
  8. Kerr J.R., Taylor G.W., Rutman A., Hoiby N., Cole P.J., Wilson R. (1999).Pseudomonas aeruginosa pyocianin and 1-hydroxyphenazine inhibit fungal growth. J. Clin. Pathol., 52: 385–387.CrossRefPubMedGoogle Scholar
  9. Koenig H. (1995). Guide De Mycologie Médicale. Edition Marketing Sa.Google Scholar
  10. Nagarajkumar M., Bhaskaran R., Velazhahan R. (2004). Involvement of secondary metabolites and extracellular lytic enzymes produced byPseudomonas fluorescens in inhibition ofRhizoctonia solani, the rice sheath blight pathogen. Microbiol. Res., 159: 73–81.CrossRefPubMedGoogle Scholar
  11. Sadfi N., Cherif M., Fliss I., Boudabous A., Antoun H. (2001). Evaluation ofBacillus isolates from salty soils andBacillus thuringiensis strains for the biocontrol ofFusarium dry rot of potato tubers. J. Plant Pathol., 83: 101–118.Google Scholar
  12. Suminori U., Toshiaki K., Takuzo K., Yasuhiro M. (1986). Antifungal composition. Eur. Patent Appl. EPO, 170: 139.Google Scholar
  13. Tagg J.R., McGiven A.R. (1971). Assay system for bacteriocins. Appl. Microbiol., 21: 943.PubMedGoogle Scholar
  14. Tawara S., Matsumoto S., Hirose T., Matsumoto Y., Nakamoto S., Mitsuno M., Kamimura T. (1989).In vitro antifungal synergism between pyrrolnitrin and clotrimazole. Jap. J. Med. Mycol., 30:202–210.Google Scholar
  15. Walsh U.F., Morrissey J.P., O’Gara F. (2001).Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr. Opin. Biotech., 1: 289–295.CrossRefGoogle Scholar
  16. Weitzman I., Summerbel R.C. (1995). The dermatophytes. Clin. Microbiol. Rev., 8: 240–259.PubMedGoogle Scholar
  17. Whipps J.M. (1987). Effect of media on growth and interactions between a range of soil-borne glasshouse pathogens and antagonistic fungi. New Phytol., 107: 127–142.CrossRefGoogle Scholar
  18. Whright S.A.I., Lindberg A., Gerhardson B. (1999). The genetic basis for the production of a fungitoxic compound by the biocontrol agent MA 342. In: Proc. 9th International Molecular Plant-Microbe Interact., July 25–30, The Netherlands.Google Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Amel Cherif
    • 1
    • 2
  • Dalinda El Euch
    • 2
  • Nadia Bessaied
    • 1
  • Amel Ben Osman Dhahri
    • 2
  • Abdellatif Boudabous
    • 1
  • Najla Sadfi-Zouaoui
    • 1
  1. 1.Laboratoire Microorganismes et Biomolécules ActivesFaculté des Sciences de TunisTunisTunisie
  2. 2.Service de DermatologieHôpital La RabtaTunisTunisie

Personalised recommendations