Annals of Microbiology

, Volume 58, Issue 2, pp 189–193 | Cite as

Relative densities of bacteriophage WO andWolbachia bacteria ofAedes albopictus mosquito during development

  • Arunee Ahantarig
  • Rabuesak Khumthong
  • Pattamaporn Kittayapong
  • Visut Baimai
Ecological and Environmental Microbiology Original Articles


Wolbachia are a group of intracellular inherited bacteria that infect a wide range of arthropods. They are related with a variety of reproductive alterations in their host, the best known being cytoplasmic incompatibility (CI). In this study, prophage WO gp1, includingWolbachia A andWolbachia B densities were determined during mosquito development by using real-time quantitative PCR (RTQ-PCR). An interesting result was found for the same flux of prophage WO gp1 andWolbachia B densities in larva, pupa, 3-day-old adult, and 21-day-old adult ofAedes albopictus mosquito (Wolbachia superinfection). The results determined thatWolbachia B and prophage WO gp1, developed with the same fluctuation from larval stage through adult stage. However, the same tendency was not observed withWolbachia A and phageWO gp1. Hence, this bacteriophage gene is more closely associated withWolbachia B strain than inWolbachia A in their relative density variations. Assesment of the density data reported herein is the first to suggest the possible association of prophage WO gp1 in CI mechanisms in consequence of the same fluctuation during development withWolbachia B gene density inAedes albopictus mosquito.

Key words

Aedes albopictus prophage WO gp1 Wolbachia real-time quantitative PCR 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brownlie J.C., O’Neill S.L. (2005).Wolbachia genomes: insights into an intracellular lifestyle. Curr. Biol., 15: R507-R509.CrossRefPubMedGoogle Scholar
  2. Bordenstein S., Marshall M.L., Fry A.J., Kim U., Wernegreen J.J. (2006). The tripartite associations between bacteriophage,Wolbachia, and arthropods. Plos Pathog., 2 (5): e43.CrossRefPubMedGoogle Scholar
  3. Chauvatcharin N., Ahantarig A., Baimai V., Kittayapong P. (2006). Bacteriophage WO-B andWolbachia in natural mosquito hosts: Infection incidence, transmission mode and relative density. Mol. Ecol., 15: 2451–2461.CrossRefPubMedGoogle Scholar
  4. Catalano C.E. (2000). The terminase enzyme from bacteriophage lambda: a DNA packaging machine. Cell Mol. Life Sci., 57: 128–148.CrossRefPubMedGoogle Scholar
  5. Curtis C.F., Sinkins S.P. (1998).Wolbachia as a possible means of driving genes into populations. Parasitology, 116 (Suppl.): S111-S115.PubMedGoogle Scholar
  6. Duron O., Bernard C., Unal S., Berthomieu A., Berticat C., Weill M. (2006). Tracking factors modulating cytoplasmic incompatibilities in the mosquitoCulex pipiens. Mol. Ecol., 15: 3061–3071.PubMedCrossRefGoogle Scholar
  7. Fujii Y., Kubo T., Ishikawa H., Sasaki T. (2004). Isolation and characterization of the bacteriophage WO fromWolbachia, an arthropod endosymbiont. Biochem. Biophy. Res. Co., 317: 1183–1188.CrossRefGoogle Scholar
  8. Gratz N.G. (2004). Critical review of the vector status ofAedes albopictus. Med. Vet. Entomol., 18: 215–227.CrossRefPubMedGoogle Scholar
  9. Guillemaud T., Pasteur N., Rousset F. (1997). Contrasting levels of variability between cytoplasmic genomes and incompatibility types in the mosquitoCulex pipiens. Proc. Biol. Sci., 264: 245–251.CrossRefPubMedGoogle Scholar
  10. Hoffmann A.A., Turelli M. (1997). Cytoplasmic incompatibility in insects. In: O’Neill S.L., Hoffmann A.A., Werren J.H., Eds, Influenctial Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford University Press, Oxford, pp. 42–80.Google Scholar
  11. Irvin N., Hoddle M.S., O’Brochta D.A., Carey B., Atkinson P.W. (2004). Assessing fitness costs for transgenicAedes aegypti expressing the GFP marker and transposase genes. Proc. Natl. Acad. Sci. USA, 101 (3): 891–896.CrossRefPubMedGoogle Scholar
  12. Kokoza V., Ahmed A., Cho W.L., Jasinskiene N., James A.A., Raikhel A. (2000). Engineering blood meal-activated systemic immunity in the yellow fever mosquito,Aedes aegypti. Proc. Natl. Acad. Sci. USA, 97 (16): 9144–9149.CrossRefPubMedGoogle Scholar
  13. Knudsen A.B. (1995). Global distribution and continuing spread ofAedes albopictus. Parasitologia, 37: 91–97.Google Scholar
  14. Kambhampati S., Rai K.S. (1991). Mitochondrial DNA variation within and among populations of the mosquito,Aedes albopictus. Genome, 34: 288–292.PubMedGoogle Scholar
  15. Kambhampati S., Black W.C., Rai K.S. (1991). Geographic origin of the US and BrazilianAedes albopictus inferred from allozyme analysis. Heredity, 67: 85–94.CrossRefPubMedGoogle Scholar
  16. Kittayapong P., Baisley K.J., Baimai V., O’Neill S.L. (2000). Distribution and diversity ofWolbachia infections in Southeast Asian mosquitoes (Diptera:Culicidae). J. Med. Entomol., 37: 340–345.CrossRefPubMedGoogle Scholar
  17. Masui S., Kamoda S., Sasaki T., Ishikawa H. (2000). Distribution and evolution of bacteriophage WO inWolbachia, the endosymbiont causing sexual alterations in Arthropods. J. Mol. Evol., 51: 491–497.PubMedGoogle Scholar
  18. O’Neill S.L., Giordane R., Colbert A.E., Karr T.L., Robertsu H.M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with CI in insects. Proc. Natl. Acad. Sci. USA, 89: 2699–2702.CrossRefPubMedGoogle Scholar
  19. Ruang-areerate T., Kittayapong P. (2006).Wolbachia transfection inAedes aegypti: A potential gene driver of dengue vectors. Proc. Natl. Acad. Sci. U S A, 103: 12534–12539.CrossRefPubMedGoogle Scholar
  20. Sanogo Y.O., Dobson S.L. (2004). Molecular discrimination ofWolbachia in theCulex pipiens complex: evidence for variable bacteriophage hyperparasitism. Insect Mol. Biol., 13: 365–369.CrossRefPubMedGoogle Scholar
  21. Sanogo Y.O., Eitam A., Dobson S.L. (2005). No evidence for bacteriophage WO orf7 correlation withWolbachia-induced cytoplasmic incompatibility in theCulex pipiens complex (Culicidae:Diptera). J. Med. Entomol., 42: 789–794.CrossRefPubMedGoogle Scholar
  22. Sinkins S.P., Curtis C.F., O’Neill S.L. (1997). The potential application of inherited symbiont systems to pest control. In: O’Neill S.L., Hoffmann A., Werren J.H., Eds, Influential Passengers: Inherited Microorganisms and Arthropod Reproduction, Oxford University Press, New York, pp. 155–175.Google Scholar
  23. Stouthamer R., Breeuwer J.A., Hurst G.D. (1999).Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol., 53: 71–102.CrossRefPubMedGoogle Scholar
  24. Turelli M., Hoffmann A.A. (1999). Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol. Biol., 8: 243–255.CrossRefPubMedGoogle Scholar
  25. Weeks A.R., Reynolds K.T., Hoffman A.A. (2002).Wolbachia dynamics and host effects: what has (and has not) been demonstrated? Trends Ecol. Evol., 17: 257–262.CrossRefGoogle Scholar
  26. Werren J.H., Windsor D.M. (2000).Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proc. Biol. Sci., 7 (267): 1277–1285.CrossRefGoogle Scholar
  27. Zhou W.F., Rousset F., O’Neill S.L. (1998). Phylogeny and PCR classification ofWolbachia strain usingwsp gene sequences. Proc. R. Soc. Lond. B., 265: 509–515.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2008

Authors and Affiliations

  • Arunee Ahantarig
    • 1
    • 2
  • Rabuesak Khumthong
    • 1
  • Pattamaporn Kittayapong
    • 1
    • 2
  • Visut Baimai
    • 1
    • 2
  1. 1.Center for Vectors and Vector-Borne Diseases, Faculty of ScienceMahidol UniversityBangkokThailand
  2. 2.Department of Biology, Faculty of ScienceMahidol UniversityBangkokThailand

Personalised recommendations