Advertisement

Annals of Microbiology

, 57:297 | Cite as

Acholeplasma laidlawii PG8 ultramicroforms amplificate selectivelyrrnB nucleotide sequences

  • Vladislav M. Chernov
  • Natalia E. Moukhametshina
  • Yurii V. Gogolev
  • Maxim V. Trushin
  • Olga A. Chernova
Methods Research Note

Abstract

Mycoplasmas are frequent contaminants ofin vitro animal cell cultures. Despite a broad spectrum of modern methods, detection of mycoplasmas remains a serious problem. The situation is complicated by the fact that mycoplasmas may be presented in cell cultures or biological samples by viable but unculturable forms (ultramicroforms). We found that the DNA ofAcholeplasma laidlawii PG8 ultramicroforms showed selective amplification of therrnB nucleotide sequences while vegetative cells of the mycoplasma showed amplification both forrrnA andrrnB sequences. The role of enzyme deproteinization in PCR results was also shown. The results presented in this report indicate that the optimisation of primer sequences as well as PCR regime may be crucial steps in detection and differentiation of vegetative forms and ultramicroforms ofA. laidlawii.

Key words

polymerase chain reaction Acholeplasma laidlawii ultramicroforms ribosomal operons 

References

  1. Barile M.F., Rottem S. (1993). Mycoplasmas in cell cultures.In Kahane, and Adoni, A. Editors.Rapid diagnosis of Mycoplasmas Plenum. New York, p. 155–193.Google Scholar
  2. Chernov V.M., Gogolev Y.V., Mukhametshina N.E., Abdrakhimov F.A., Chernova O.A. (2004). Mycoplasma adaptation to biogenic and abiogenic stressful factors;Acholeplasma laidlawii nannotransformation and minibodies. Dokl Biol Sci., 396: 251–254.CrossRefPubMedGoogle Scholar
  3. Chernov V.M., Gogolev Y.V., Mukhametshina N.E., Abdrakhimov F.A., Chernova O.A. (2005). Adaptive reactions of mycoplasmasin vitro: “viable but unculturable forms” and nanocells ofAcholeplasma laidlawii. Microbiologiya, 74:498–504.Google Scholar
  4. Kenri T., Sasaki T., Kano Y. (1998). Identification and characterization of HU protein fromMycoplasma gallisepticum. Biochem. Boiphys. Res. Comm., 249:48–52.CrossRefGoogle Scholar
  5. Kong F., James G., Gordon S., Zelynski A., Gilbert G. (2001). Species-specific PCR for identification of common contaminant mollicutes in cell culture. Appl. Env. Microbiol., 67: 3195–3200.CrossRefGoogle Scholar
  6. Nishino T., Nayak B.B., Kogure K. (2003). Density-dependent sorting of physiologically different cells ofVibrio parahaemolyticus. Appl. Env. Microbiol., 69: 3569–3572.CrossRefGoogle Scholar
  7. Razin Sh., Herrmann, R. 2002. Molecular biology and pathogenicity of mycoplasmas. NY, Plenum Publishers.CrossRefGoogle Scholar
  8. Warner J.M., Oliver J.D. (1998). Randomly amplified polymorphic DNA analysis of starved and viable but nonculturableVibrio vulnificus cells. Appl. Env. Microbiol., 64: 3025–3028.Google Scholar
  9. Weisburg W.G., Tully J.G., Rose D.L., Petzel J.P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T.G., van Etten J.L., Maniloff J., Woese C.R. (1989). A phylogenetic analysis of the mycoplasmas: Basis for their classification. J. Bacteriol., 171: 6455–6467.PubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  • Vladislav M. Chernov
    • 1
  • Natalia E. Moukhametshina
    • 1
  • Yurii V. Gogolev
    • 1
  • Maxim V. Trushin
    • 1
  • Olga A. Chernova
    • 1
  1. 1.Kazan Institute of Biochemistry and BiophysicsRussian Academy of SciencesKazanRussia

Personalised recommendations