Annals of Microbiology

, Volume 57, Issue 2, pp 209–215 | Cite as

The effect of potassium sorbate, NaCl and pH on the growth of food spoilage fungi

Food Microbiology Short Communication


In this study, the hurdle technology approach was used to prevent fungal growth of common spoilage fungi in naturally fermented black olives (Alternaria alternata, Aspergillus niger, Fusarium semitectum andPenicillium roqueforti). The factors studied included a combination of different concentrations of potassium sorbate (100 up to 1000 mg/L), a range of pH values (4.5, 5, 5.5, 6, and 6.5) and levels of NaCl (0, 3.5, 5, 7.5, and 10%).Alternaria alternata was the most sensitive fungus whereasP. roqueforti was the most resistant fungi against all hurdle factors. The combination of all hurdles completely inhibitedA. alternata andF. semitectum by lowest inhibitory factors, such as 100 mg/L potassium sorbate with 3.5% NaCl at pH 5. On the other hand, at pH 5, A.niger andP. roqueforti were totally prevented by a combination of 300 mg/L potassium sorbate with 10% NaCl and 400 mg/L potassium sorbate with 7.5% NaCl, respectively. Potassium sorbate and 5–10% NaCl interaction had significant stimulation effect onp. roqueforti andA. niger (p<0.05). This study indicates that potassium sorbate is a suitable preserving agent to inhibit growth of fungi in fermented products of pH near 4.5 regardless levels of NaCl. For products of slightly higher pH, the addition of potassium sorbate is suggested in combination with NaCl.

Key words

fungi inhibition potassium sorbate pH NaCl 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bau M., Bragulat M.R., Abarca M.L., Minguez S., Cabanes F.J. (2005). Ochratoxigenic species from Spanish wine grapes Int. J. Food Microbiol., 98 (2): 125–130.CrossRefGoogle Scholar
  2. Chirife J., Favetto J. (1992). Some physico-chemical basis of food preservation by combined methods. Appl Technol., 25:389–396.Google Scholar
  3. Combina M., Dalcero A.M., Varsavsky E., Chulze, S. (1999). Effects of food preservatives onAlternaria alternata growth and tenuazonic acid production. Food Addit. Contam., 16: 433–437.CrossRefPubMedGoogle Scholar
  4. Cuppers H.G.A.M., Oomes S., Brul S. (1997). A model for the combined effect of temperature and salt concentration on growth rate of food spoilage molds. Appl. Environ. Microbiol., 63: 3764–3769.PubMedGoogle Scholar
  5. Dantigny P., Guilmart A., Bensoussan M. (2005). Basis of predictive mycology. Int. J. Food Microbiol., 100: 187–196.CrossRefPubMedGoogle Scholar
  6. Davidson P.M. (1997). Chemical preservatives and natural antimicrobial compounds. In; Doyle M. P., Beuchat L.R., Montville T.J., Eds, Food Microbiology: Fundamentals and Frontiers. Washington DC, ASM Press, pp. 520–556.Google Scholar
  7. Delgado T., Gomez-Cordoves C. (1998). Natural occurrence of alternariol and alternariol methyl ether in Spanish apple juice concentrates. J. Chromatogr. A, 815 (1): 93–97.CrossRefPubMedGoogle Scholar
  8. Earle M.D., Putt G.J. (1984). Microbial spoilage and use of sorbate in bakery products. Food Technol., 19: 25–36.Google Scholar
  9. Eklund T. (1983). The antimicrobial effect of dissociated and undissociated sorbic acid at different pH levels. J. Appl. Bacteriol., 54: 383–389.PubMedGoogle Scholar
  10. Eklund T. (1985). Inhibition of microbial growth at different pH levels by benzoic and propionic acids and esters of p-hydroxybenzoic acid. Int. J. Food Microbiol., 2: 159–167.CrossRefGoogle Scholar
  11. El-Gazzar F., Rusul G., Marth E.H. (1986). Growth and aflatoxin production byAspergillus parasiticus in the presence of sodium chloride. J. Food Protect., 49 (6): 461–466.Google Scholar
  12. Farag R.S., Daw Z.Y., Abo-Raya S.H. (1989). Influence of some spice essential oils onAspergillus parasiticus growth and production of aflatoxins in a synthetic medium. J. Food Sci., 54: 74–76.CrossRefGoogle Scholar
  13. Finol M.L., Marth E.H., Lindsay R.C. (1982). Depletion of sorbate from different media during growth ofPenicillium species. J. Food Protect., 45: 398–404.Google Scholar
  14. Fustier P., Lafond A., Champagne C.P., Lamarche F. (1998). Effect of inoculation techniques and relative humidity on the growth of molds on the surfaces on yellow layer cakes. Appl. Environ. Microbiol., 64: 192–196.PubMedGoogle Scholar
  15. Gould G.W. (1996). Methods for preservation and extension of shelf life. Int. J. Food Microbiol., 33: 51–64.CrossRefPubMedGoogle Scholar
  16. Hsieh K.P., Yu S., Wei Y.H., Chen C.F., Wei R.D. (1986). Inhibitory effectin vitro of PR toxin, a mycotoxin fromPenicillium roqueforti, on the mitochondrial bicarbonate-ATPase of the rat brain, heart and kidney. Toxicon, 24 (2):153–160.CrossRefPubMedGoogle Scholar
  17. Kulik M.M., Hanlin R.T. (1968). Osmophilik strains ofAspergillus species. Mycologia, 60: 961–964.CrossRefPubMedGoogle Scholar
  18. Leistner L. (1992). Food preservation by combined methods. Appl. Techol., 25: 151–158.Google Scholar
  19. Liewen M.B., Marth E.H. (1985). Growth of sorbate-resistant and-sensitive strains ofPenicillium roqueforti in the presence of sorbate. J. Food Protect., 48 (6):525–529.Google Scholar
  20. Lopez-Malo A., Alzamora S.M., Palou E. (2002).Aspergillus flavus dose-response curves to selected natural and synthetic antimicrobials. Int. J. Food Microbiol., 73: 213–218.CrossRefPubMedGoogle Scholar
  21. Lopez-Malo A., Alzamora S.M., Palou E. (2005).Aspergillus flavus growth in the presence of chemical preservatives and naturally occurring antimicrobial compounds. Int. J. Food Microbiol., 99: 119–128.CrossRefPubMedGoogle Scholar
  22. Marasas W.F.O., Nelson P.E., Toussoun T.A. (1984). ToxigenicFusarium species. Identify and Mycotoxicology. The Pennsylvania State University Press, University Park, London, UK.Google Scholar
  23. Marin S., Guynot M.E., Neira P., Bernado M., Sanchis V., Ramos A.J. (2002). Risk assessment of the use of sub-optimal levels of weak-acid preservatives in the control of mould growth on bakery products. Int. J. Food Microbiol., 79: 203–211.CrossRefPubMedGoogle Scholar
  24. Moss M.O. (2000). Toxigenic fungi and mycotoxins. In: Lund B.M., Baird-Parker T.C., Gould G.W., Eds, Microbiological Safety and Quality of Food. Aspen Publishers, Inc., Gaithersburg, Maryland, pp. 1490–1517.Google Scholar
  25. Nickelsen L., Jakobsen, M. (1997). Quantitative risk analysis of aflatoxin toxicity for the consumers of “kenkey” — a fermented maize product. Food Contr., 3: 149–159.CrossRefGoogle Scholar
  26. Nielsen P.V., Rios R. (2000). Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol., 60: 219–229.CrossRefPubMedGoogle Scholar
  27. Ozcan M., Boyraz N. (2000). Antifungal properties of some herb decoctions. Eur. Food Res. Technol., 212: 86–88.CrossRefGoogle Scholar
  28. Pethybridge A.D., Ison R.W., Harrigan W.F. (1983). Dissociation constant of sorbic acid in water and water-glycerol mixtures at 25 °C from conductance measurements. J. Food Technol., 18, 789–784.CrossRefGoogle Scholar
  29. Praphailong W., Fleet G.H. (1997). The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiol., 14: 459–468.CrossRefGoogle Scholar
  30. Rundberget T., Skaar I., Flaoyen A. (2004). The presence ofPenicillium andPenicillium mycotoxins in food wastes. Int. J. Food Microbiol., 90 (2): 181–188.CrossRefPubMedGoogle Scholar
  31. Rusul G., Marth, E.H. (1987). Growth and aflatoxins production byAspergillus parasiticus NRRL 2999 in the presence of potassium benzoate or potassium sorbate and at different initial pH values. J. Food Protect., 50 (10): 820–825.Google Scholar
  32. Sahin I., Korukluoglu M. (2000). Kuf-Gida-insan. Uludag Universitesi Guclendirme Vakfi Vipas A.S. ISBN975-564-095-9, Bursa.Google Scholar
  33. Sofos J.N., Busta F.F. (1981). Antimicrobial activity of sorbate. J. Food Protect., 44: 614–622.Google Scholar
  34. Stratford M., Anslow P.A. (1998). Evidence that sorbic acid does not inhibit yeast as a classic weak acid preservative. Lett. Appl. Microbiol., 27: 203–206.CrossRefPubMedGoogle Scholar
  35. Suhr K.I., Nielsen P.V. (2004). Effect of weak acid preservatives on growth of bakery product spoilage fungi at different water activities and pH values. Int. J. Food Microbiol., 95: 67–78.CrossRefPubMedGoogle Scholar
  36. Thakur B.R., Singh R.K., Arya S.S. (1994). Chemistry of sorbate — a basic perspective. Food Rev. Int., 10: 71–91.CrossRefGoogle Scholar
  37. Tzatzarakis M., Tsatsakis A.M., Liakou A., Vakalounakis D.J. (2000). Effect of common food preservatives on mycelial growth and spore germination ofFusarium oxysporum. J. Environ. Sci. Health, B35 (4): 527–537.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  1. 1.Department of Food Engineering, Faculty of AgricultureUludag UniversityBursaTurkey

Personalised recommendations