Annals of Microbiology

, Volume 59, Issue 3, pp 399–408 | Cite as

Purple anoxygenic phototrophic bacteria distribution in Tunisian wastewater stabilisation plant exhibiting red water phenomenon

  • Abdelaziz Belila
  • Maher Gtari
  • Ahmed Ghrabi
  • Abdennaceur Hassen
Ecological and Environmental Microbiology Original Articles


Both eutrophication and thermal stratification lead to degradation of wastewater treatment efficiency and have a major effect on the wastewater pond biology, but their effects on phototrophic anoxygenic bacterial community is not as well understood. Terminal restriction fragment length polymorphism analysis proved to be a valuable technique that could resolve the diversity and shift of the purple anoxygenic phototrophic community composition in three stage wastewater stabilization ponds (WSP) exhibiting periodically red water phenomenon. Chemical and biological parameters confirmed the eutrophic state during the appearance of the red water. Concomitantly a decrease of ponds performances is reported with total removal percentage of 27, 36 and 43% for Total suspended solid (TSS), DBO5 and DCO, respectively. By targeting thepufM gene, 74 Terminal restriction fragments (TRFs) were detected in the three studied ponds which 78% were located in the anaerobic and facultative ponds. Simpson (D) and Shannon (H′) diversity index showed a loss of phototrophic bacterial diversity from the anaerobic to the maturation pond, especially in the water phase. Principal coordinate analysis (PCoA) of bothHpaII andHaeIII — T-RFLP profiles, allowed deducting a differential distribution between the water and sediments samples.

Key words

wastewater stabilisation ponds purple anoxygenic phototrophs pufM gene stratification T-RFLP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abis K.L., Mara D. (2006). Temperature measurement and stratification in facultative waste stabilisation ponds in the UK climate. Environ. Monit. Assest., 114: 35–47.CrossRefGoogle Scholar
  2. Achenbach L.A., Carey J., Madigan M.T. (2001). Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. Appl. Environ. Microbiol., 6: 2922–2926.CrossRefGoogle Scholar
  3. APHA — American Public Health Association (1995). Standard methods for the examination of water and wastewater, 19th edn., American Public Health Association.Google Scholar
  4. Atlas R.M., Bartha R. (1987). Microbial Ecology: Fundamentals and Applications, 2nd edn., Benjamin Cummings Publishing Co. Inc., Menlo Park, CA.Google Scholar
  5. Blackwood C.B., Hudleston D., Zak D.R., Buyer J.S. (2007). Interpreting ecological diversity indices applied to terminal restriction fragment length polymorphism data: insights from simulated microbial communities. Appl. Environ. Microbiol, 73: 5276–5283.CrossRefPubMedGoogle Scholar
  6. Bordenave S., Jézéquel R., Fourçans A., Budzinski H., Merlin F.X., Fourel T., Goñi-Urriza M., Guyoneaud R., Grimaud R., Caumette P., Duran R (2004). Degradation of the “Erika” oil. Aquat. Living. Resour., 17: 261–267.CrossRefGoogle Scholar
  7. Brune D.C. (1995). Sulfur compounds as photosynthetic electron donors. In: Blankenship R.E., Madigan M.T., Bauer C.E., Eds, Anoxygenic photosynthetic bacteria, Kluwer, Dordrecht, The Netherlands, pp. 847–870.Google Scholar
  8. Clarke K.R., Warwick R.M. (2001). Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn, Primere Ltd., Plymouth Marine Laboratory, UK.Google Scholar
  9. Clayton R.K. (1963). Toward the isolation of a photochemical reaction center inRhodopseudomonas sphaeroides. Biochim. Biophys. Acta, 75: 312–323.CrossRefPubMedGoogle Scholar
  10. Cooper D.E., Rands M.B., Woo C.P. (1975). Sulfide reduction in fellmongery effluent by red sulfur bacteria. J. Water Pollut. Control Fed., 47: 2088–2100.PubMedGoogle Scholar
  11. Corson G.E., Nagashima K.V.P., Matsuura K., Sakuragi Y., Wettasinghe R., Qin H., Allen R., Knaff D.B. (1999). Genes encoding light harvesting and reaction center proteins fromChromatium vinosum. Photosyn. Res., 59: 39–52.CrossRefGoogle Scholar
  12. Curtis T.P., Mara D.D., Dixo N.G.H., Silva S.A. (1994). Light penetration in waste stabilisation ponds. Water. Res., 28: 1031–1038.CrossRefGoogle Scholar
  13. Deirdre C.R., Clipson N. (2008). Impact of sheep urine deposition and plant species on ammonia-oxidizing bacteria in upland grassland soil. Can. J. Microbiol., 54: 791–796.CrossRefGoogle Scholar
  14. Doering P.H. Chamberlain R.H. Haunert K.M. (2006). Chlorophyll a and its use as an Indicator of Eutrophication in the Caloosahatchee Estuary, Florida. Florida Scientist, 69: 51–72.Google Scholar
  15. Dunbar J., Ticknor L.O., Kuske C.R. (2000). Assessment of microbial diversity in four Southwestern United States soils by 16S rRNA gene terminal restriction fragment analysis. Appl. Environ. Microbiol., 66: 2943–2950.CrossRefPubMedGoogle Scholar
  16. Engebretson J.J., Moyer C.L. (2003). Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl. Environ. Microbiol., 69: 4823–4829.CrossRefPubMedGoogle Scholar
  17. Fairchild G.W., Anderson J.N., Velinsky D.J. (2005). The trophic state “chain of relationships” in ponds: Does size matter? Hydrobiologia, 539: 35–46.CrossRefGoogle Scholar
  18. Fuchs B.M., Spring S., Teeling H., Quast C., Wulf J., Schattenhofer M., Yan S., Ferriera al. (2007). Characterization of a marine gamma-proteobacterium capable of aerobic anoxygenic photosynthesis. Proc. Natl. Acad. Sci. USA, 104: 2891–2896.CrossRefPubMedGoogle Scholar
  19. Fourçans A., De Oteyza T.G., Wieland A., Solé A., Diestra E., Van Bleijswijk J., Grimalt J.O., Kühl M., Esteve I., Muyzer G., Caumette P., Duran R. (2004). Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS. Microbiol. Ecol., 51: 55–70.CrossRefPubMedGoogle Scholar
  20. Fulcher T.K., Beatty J.T., Jones M.R. (1998). Demonstration of the key role played by thePufX protein in the functional and structural organization of native and hybrid bacterial photosynthetic core complexes. J. Bacteriol., 180: 642–646.PubMedGoogle Scholar
  21. Hansen T.A., van Gemerden H. (1972). Sulfide utilization by purple nonsulfur bacteria. Arch. Microbiol., 86: 49–56.Google Scholar
  22. Hewson I., Fuhrman J.A. (2004). Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl. Environ. Microbiol., 70: 3425–3433.CrossRefPubMedGoogle Scholar
  23. Hoogwerf G.J., Jung D.O., Madigan T. (2003). Evidence for limited species diversity of bacteriochlorophyll b-containing purple nonsulfur anoxygenic phototrophs in freshwater habitats. FEMS. Microbiol. Lett., 218: 359–364.CrossRefGoogle Scholar
  24. Imhoff J.F. (1995). Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blakenship R.E., Madigan M.T., Bauer C.E., Eds, Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 1–15.Google Scholar
  25. Imhoff J.F. (2005). The anoxygenic phototrophic purple bacteria. In: Boone, Castenholz and Garrity Eds., Bergey’s Manual of Systematic Bacteriology, 2nd edn., Vol. 1, Springer-Verlag, New York, pp. 631–637.Google Scholar
  26. Kitts C.L. (2001). Terminal restriction fragment patterns: a tool for comparing microbial communities and assessing community dynamics. Curr. Iss. Intest. Microbiol., 2: 17–25.Google Scholar
  27. Kovach W.L. (1999). MVSP: A Multivariate Statistical Package for Windows, ver. 3.1., Wale, UK.Google Scholar
  28. Legendre P., Legendre L. (1998). Numerical Ecology, Vol. 1, Elsevier, Amsterdam, The Netherlands.Google Scholar
  29. Llorens M., Saez J., Soler A. (1992). Influence of thermal stratification on the behaviour of a deep wastewater stabilization pond. Water. Res., 25: 567–577.Google Scholar
  30. Madigan M.T. (1988). Microbiology, physiology and ecology of phototrophic bacteria. In: Zehner A.J.B., Ed., Biology of Anaerobic Microorganisms. John Wiley & Sons, New York, N.Y, pp. 39–111.Google Scholar
  31. Madigan M.T. (1995). Microbiology of nitrogen fixation in photosynthetic bacteria. In: Blankenship R.E., Madigan M.T., Bauer C.E., Eds., Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 915–928.Google Scholar
  32. Madigan M.T. (2000). Bacterial habitats in extreme environments. In: Seckbach J., Ed., Journey to Diverse Microbiol Worlds. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 61–72.Google Scholar
  33. Madigan M.T., Martinko J.M., Parker J. (2003). Brock Biology of Microorganisms, 10th edn., Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  34. Montesinos E., Ricardo G., Carlos A., Isabel E. (1983). Ecology and physiology of the competition for light betweenChlorobium limicola andChlorobium phaeobacteroides in natural habitats. Appl. Environ. Microbiol., 46: 1007–1016.PubMedGoogle Scholar
  35. Okubo Y., Futamata H., Hiraishi A (2005). Distribution and capacity for utilization of lower fatty acids of phototrophic purple non sulphur bacteria in wastewater environments. Microbiol. Environ., 20: 135–143.CrossRefGoogle Scholar
  36. Okubo Y., Futamata H., Hiraishi A. (2006). Characterization of phototrophic purple nonsulfur bacteria forming colored microbial mats in a swine wastewater ditch. Appl. Environ. Microbiol., 72: 6225–6233.CrossRefPubMedGoogle Scholar
  37. Pearson H.W. (1986). Estimation of chlorophyll a as a measure of algal biomass in waste stabilization ponds. Regional Seminar on Waste Stabilization Pond Research, CEPIS, Lima.Google Scholar
  38. Pierson B.K., Olson J.M. (1987). Photosynthetic bacteria. In: Amez J., Ed., Elsevier Science Publishers, B.V. Amsterdam, The Netherlands, pp. 21–42.Google Scholar
  39. Pfennig N., Trüper H.G. (1974). The phototrophic bacteria, In: Buchanan R.E., Gibbons N.E., Eds, Bergey’s Manual of Determinative Bacteriology, 8th edn., Williams and Wilkins Co, Baltimore, pp. 24–64.Google Scholar
  40. Pfennig N. (1989). Ecology of phototrophic purple and green sulfur bacteria. In: Schlegel H.G., Bowien B., Eds, Autotrophic Bacteria. Springer-Verlag, New York, pp. 81–96.Google Scholar
  41. Ranchou-Peyruse A., Herbert R., Caumette P., Guyoneaud R. (2006). Comparison of cultivation-dependent and molecular methods for studying the diversity of anoxygenic purple phototrophs in sediments of an eutrophic brackish lagoon. Environ. Microbiol., 8: 1590–1599.CrossRefPubMedGoogle Scholar
  42. Scheffer M. (1998). Ecology of Shallow Lakes. Kluwer Academic Publishers, Boston, MA.Google Scholar
  43. Schwalbach M.S., Fuhrman J.A. (2005). Wide-ranging abundances of aerobic anoxygenic phototrophic bacteria in the world ocean revealed by epifluorescence microscopy and quantitative PCR. Limnol. Oceanogr., 50: 620–628.CrossRefGoogle Scholar
  44. Stomp M., Huisman J., Stal L.J., Matthijs H.C.P. (2007). Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule. ISME J., 1: 271–282.PubMedGoogle Scholar
  45. Stres B. (2006). The first decade of terminal restriction fragment length polymorphism (T-RFLP) in microbial ecology. Acta Agri. Sloven., 88: 65–73.Google Scholar
  46. Troussellier M., Legendre P., Baleux B. (1986). Modelling the evolution of bacterial densities in eutrophic ecosystem (sewage lagoons). Microbiol. Ecol., 12: 355–379.CrossRefGoogle Scholar
  47. Van Gemerden H., Beeftink H.H. (1983). Ecology of phototrophic bacteria. In: Ormerod J.G.,Ed., The Phototrophic Bacteria. University of California Press, Berkeley, pp. 146–185.Google Scholar
  48. Van Gemerden H. (1995). Ecology of phototrophic sulfur bacteria. In: Blankenship R.E. Madigan M.T., Bauer C.E., Eds, Anoxygenic Photosynthetic Bacteria. Kluwer Academic Publishers, Dordrecht, pp. 50–79.Google Scholar
  49. Wenke T.L., Vogt J.C. (1981). Temporal changes in a pink feedlot lagoon. Appl. Environ. Microbiol., 41: 381–385.PubMedGoogle Scholar
  50. Young S.D., Schmidt T.M., Zahn J.A, Boyd E.S., De la Mora A., DiSpirito A.A. (2003). Role ofRhodobacter sp. strain ps9, a purple non-sulfur photosynthetic bacterium isolated from an anaerobic swine waste lagoon, in odour remediation. Appl. Environ. Microbiol., 69: 1710–1720.CrossRefGoogle Scholar
  51. Yurkov V.V., Beatty J.T. (1998). Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev., 62: 695–724.PubMedGoogle Scholar
  52. Yurkov V.V., Csotonyi J.T. (2003). Aerobic anoxygenic phototrophs and heavy metalloid reducers from extreme environments. In: Pandalai S.G., Ed., Recent Research Developments in Bacteriology, Vol 1, Transworld Research Network, Trivandrum, pp. 247–300.Google Scholar
  53. Yutin N., Suzuki M.T., Beja O. (2005). Novel primers reveal wider diversity among marine aerobic anoxygenic phototrophs. Appl. Environ. Microbiol., 71: 8958–8962.CrossRefPubMedGoogle Scholar
  54. Zeng Y.H., Chen X.H., Jiao N.Z. (2007). Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences. Lett. Appl. Microbiol., 45: 639–645.CrossRefPubMedGoogle Scholar
  55. Zhu H., Ueda S., Asada Y., Miyake (2002). Hydrogen production as a novel process of wastewater treatment-studies on tofu wastewater with entrappedR. sphaeroides and mutagenesis. Int. J. Hydrogen Energ., 27: 1349–1357.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2009

Authors and Affiliations

  • Abdelaziz Belila
    • 1
  • Maher Gtari
    • 2
  • Ahmed Ghrabi
    • 1
  • Abdennaceur Hassen
    • 1
  1. 1.Water Researches and Technologies Centre of Bordj-Cedria Water Treatment and Reuse LaboratorySoliman
  2. 2.Microorganisms and Active Bio-molecules LaboratoryFaculty of ScienceTunisTunisia

Personalised recommendations