Advertisement

Kombur Sesha Iyengar Kuppuswamy Iyengar in memoriam

Article
  • 12 Downloads

References

  1. 1.
    K. S. K. IYENGAROn Narasinga Rao’s Problem and its reciprocal.Math. Student, 5, 1938.Google Scholar
  2. 2.
    A note on Narasinga Rao’s problem relating to tetrahedra,Proc. Ind. Acad. Sci., 7, 1938, 269.Google Scholar
  3. 3.
    On a problem relating to tetrahedra,Ibid.,, 7, 1938, p. 305.Google Scholar
  4. 4.
    Theorems on the functional limits of derivatives of a function at infinity,Ibid.,, p. 343.Google Scholar
  5. 5, 6, 7.
    On Linear transformations of bounded sequences—I, II, III,ibid.,, p. 399; 8, p. 20, p. 135.Google Scholar
  6. 8.
    K. S. K. IYENGAR Note on an inequality, and a note on the zeros of\(\sum\limits_{n = 0}^n {z^r /r} \)!,Math. Student, 6, 1938.Google Scholar
  7. 9.
    On a problem related to the Cauchy-Maclaurin integral test,Proc. Ind. Acad. Sci., 9, 1939, 139.Google Scholar
  8. 10.
    A new proof of Mehler’s formula and other theorems on Hermitian polynomials,ibid.,, 10, 1939, 211.MathSciNetGoogle Scholar
  9. 11.
    On a new proof of the formula for the generating function of Laguerre polynomials and other related formulae,ibid.,, p. 181.MATHMathSciNetGoogle Scholar
  10. 12.
    K. S. K. IYENGAROn a test for the completeness (L2)of a normal orthogonal set and its applications,J. I. M. S., 4 (new series), 1939.Google Scholar
  11. 13.
    A note on the symmetric first and second mean derivatives of a continuous function,Comptes Rendus d. Soc. Sc. Varsovie, 31, 1938-39, 108.MATHGoogle Scholar
  12. 14.
    A property of integral functions with real roots and of order less than two,Annals of Mathematics, 42, 1941, 823.CrossRefMathSciNetGoogle Scholar
  13. 15.
    On Frullani integrals,Proc. Camb. Phil. Soc., 37, 1941, 9.CrossRefMathSciNetGoogle Scholar
  14. 16.
    Notes on summability, I,J. Mys. Univ., 3, Pt. 17, 1942, 123.MathSciNetGoogle Scholar
  15. 17.
    Exact solutions of the equations of the general cascade theory with collision loss,Proc. Ind. Acad. Sci., 15, 1942, 195–229.MATHMathSciNetGoogle Scholar
  16. 18.
    K. S. K. IYENGARNotes on summability, II,J. Mys. Univ., 4, Pt. 9, 161.Google Scholar
  17. 19.
    A Tauberian theorem and its application to convergence of Fourier series,Proc. Ind. Acad. Sci., 18, 1943, 81.MATHMathSciNetGoogle Scholar
  18. 20.
    New convergence and summability tests for fourier series,ibid.,, p. 113.MATHMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1944

Personalised recommendations