Annals of Microbiology

, Volume 57, Issue 3, pp 431–437 | Cite as

In vitro effect of pH and ethanol on biofilm formation by clinicalica-positiveStaphylococcus epidermidis strains

  • Kamel Chaieb
  • Olfa Chehab
  • Tarek Zmantar
  • Mahmoud Rouabhia
  • Kacem Mahdouani
  • Amina Bakhrouf
Applied Microbiology Original Articles


Biofilm production is an important step in the pathogenesis ofStaphylococcus epidermidis associated biomaterial infections.Staphylococcus epidermidis strains isolated from dialysis fluid (n=9) and needle cultures (n=14) were phenotyped and genotyped for extracellular polysaccharide production and were examined for their ability to produce slime in a medium at various pH levels (3, 5, 7, 9 and 12) and with ethanol supplementation (0, 2, 5, 10 and 15%) using a semi-quantitative adherence assay. A total of 23 clinicalicaADBC positiveS. epidermidis, one reference strain (S. epidermidis CIP 106510) used as positive control, and oneicaADBC negative strain (E21) were investigated. Qualitative biofilm production analysis revealed that 15 of the 23icaADBC positive strains (65.21%) produced slime on Congo Red agar plates. Quantitative biofilm was determined by measuring the optical density at 570 nm (OD570). The results show that the slime production depended on the pH value of the medium and the ethanol concentration. At highly acidic (pH 3) and alkaline (pH 12) levels, the OD570 was lower, while at pH 7 the adhesion was moderate. In addition the cells adhered strongly with 2% ethanol than with the other concentrations. Our results suggest that pH and ethanol were stress factors that led toS. epidermidis biofilm formation and also play a possible role in the pathogenesis of biomaterial-related infections.

Key words

Staphylococcus epidermidis biofilm ica gene Congo Red agar pH ethanol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arciola C.R., Campoccia D., Gamberini S., Cervellati M., Donati E., Montanaro L. (2002). Detection of slime production by means of an optimised Congo red agar plate test based on a colourimetric scale inStaphylococcus epidermidis clinical isolates genotyped forica locus. Biomaterials, 23: 4233–4239.CrossRefPubMedGoogle Scholar
  2. Bayer M.E., Sloyer J.L.J. (1990). The electrophoretic mobility of Gram-negative and Gram-positive bacteria: an electrokinetic analysis. J. Gen. Microbiol., 136: 867–874.PubMedGoogle Scholar
  3. Cerca N., Pier G.B., Vilanova M., Oliveira R., Azeredo J. (2005). Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates ofStaphylococcus epidermidis. Res. Microbiol., 156: 506–514.CrossRefPubMedGoogle Scholar
  4. Christensen G.D., Simpson W.A., Younger J.J., Baddour L.M., Barrett F.F., Melton D.M., Beachey E.H. (1985). Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J. Clin. Microbiol., 22: 996–1006.PubMedGoogle Scholar
  5. Conlon K.M., Humphreys H., O’Gara J.P. (2002).icaR encodes a transcriptional repressor involvedin environmental regulation ofica operon expression and biofilm formation inStaphylococcus epidermidis. J. Bacteriol., 184: 4400–4408.CrossRefPubMedGoogle Scholar
  6. Costerton J.W., Stewart P.S., Greenberg E.P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284: 1318–1322.CrossRefPubMedGoogle Scholar
  7. Doyle R. (2000). Contribution of the hydrophobic effect to microbial infection, Microb. Infect. 2: 39–400.Google Scholar
  8. Elliott T.S., Faroqui M.H., Armstrong R.F., Hanson G.C. (1994). Guidelines for good practice in central venous catheterization. J. Hosp. Infect., 28: 163–176.CrossRefPubMedGoogle Scholar
  9. Fitzpatrick F., Humphreys H., Smyth E., Kennedy C.A., O’Gara J.P. (2002). Environmental regulation of biofilm formation in intensive care unit isolates ofStaphylococcus epidermidis. J. Hosp. Infect., 42: 212–218.CrossRefGoogle Scholar
  10. Freeman D.J., Falkiner F.R., Keane C.T. (1989). New method for detecting slime production by coagulase-negative staphylococci. J. Clin. Pathol., 42: 872–874.CrossRefPubMedGoogle Scholar
  11. Götz F. (2002).Staphylococcus and biofilms. Mol. Microbiol., 43: 1367–1378.CrossRefPubMedGoogle Scholar
  12. Knobloch J.K., Bartscht K., Sabottke A., Rohde H., Feucht H.H., Mack D. (2001). Biofilm formation byStaphylococcus epidermidis depends on functionalRsbU, an activator of thesigB operon: differential activation mechanisms due to ethanol and salt stress. J. Bacteriol., 183: 2624–2633.CrossRefPubMedGoogle Scholar
  13. Lawrence E.L., Turner I.G. (2005). Materials for urinary catheters: a review of their history and development in the UK. Med. Eng. Phys., 27: 443–453.CrossRefPubMedGoogle Scholar
  14. Mack D., Bartscht K., Fischer C., Rohde H., de Grahl C., Dobinsky S., Horstkotte M.A., Kiel K., Knobloch J.K. (2001). Genetic and biochemical analysis ofStaphylococcus epidermidis biofilm accumulation. Method. Enzymol., 336: 215–239.CrossRefGoogle Scholar
  15. Mack D., Rohde H., Dobinsky S., Riedewald J., Nedelmann M., Knobloch J.K., Elsner H.A., Feucht H.H. (2000). Identification of three essential regulatory gene loci governing expression of theStaphylococcus epidermidis polysaccharide intercellular adhesin and biofilm formation. Infect. Immun., 68: 3799–807.CrossRefPubMedGoogle Scholar
  16. McKenney D., Pouliot K.L., Wang Y., Murthy V., Ulrich M., Döring G., Lee J.C., Goldmann D.A., Pier G.B. (1999). Broadly protective vaccine forStaphylococcus aureus based on anin vivo expressed antigen. Science, 284: 1523–1527.CrossRefPubMedGoogle Scholar
  17. Meinders J.M., van der Mei H.C., Busscher H.J. (1994). Physicochemical aspects of deposition ofStreptococcus thermophilus B to hydrophobic and hydrophilic substrata in a parallel plate flow chamber. J. Colloid. Interf. Sci., 164: 355–363.CrossRefGoogle Scholar
  18. Memple M., Schmidt T., Weidinger S., Weidinger S., Schnopp Ch., Foster T., Ring J., Abeck D. (1998). Role ofStaphylococcus aureus surface-associated proteins in the attachment to cultured HaCa T keratinocytes in a new adhesion assay. J. Invest. Dermatol., 111: 452–456.CrossRefGoogle Scholar
  19. Mermel L.A. (2000). Prevention of intravascular catheter-related infections. Ann. Intern. Med., 132: 391–402.PubMedGoogle Scholar
  20. Patrick C.C., Plaunt M.R., Hetherington S.V., May S.M. (1992). Role ofStaphylococcus epidermidis slime layer in experimental tunnel tract infections. Infect. Immun., 60: 1363.PubMedGoogle Scholar
  21. Pearson M.L. (1996). Guideline for prevention of intravascular device-related infections. Hospital Infection Control Practices Advisory Committee. Infect. Cont. Hosp. Ep., 17: 438–473.CrossRefGoogle Scholar
  22. Peters G., Locci R., Pulverer G. (1982). Adherence and growth of coagulase-negative staphylococci on surfaces of intravenous catheters. J. Infect. Dis., 146: 479–482.PubMedGoogle Scholar
  23. Rachid S., Ohlsen K., Witte W., Hacker J., Ziebuhr W. (2000a). Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-formingStaphylococcus epidermidis. Antimicrob. Agents Chemother., 44: 3357–3363.CrossRefPubMedGoogle Scholar
  24. Rachid S., Cho S., Ohlsen K., Hacker J., Ziebuhr W. (2000b). Induction ofStaphylococus epidermidis biofilm formation by environmental factors: the possible involvement of the alternative transcription factor SigB.In L. Emody, G. Blum-Oehler, J. Hacker, Pal T., Eds, Genes and Proteins Underlying Microbial Urinary Tract Virulence. Plenum Press, New York, N.Y., pp. 159–166.Google Scholar
  25. Rupp M.E., Archer G.L. (1994). Coagulase-negative staphylococci: pathogens associated with medical progress. Clin. Infect. Dis., 19: 231–243.PubMedGoogle Scholar
  26. Shapiro J.A. (1998). Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol., 52: 81–104.CrossRefPubMedGoogle Scholar
  27. Vasudevan P., Nair M.K., Annamalai T., Venkitanarayanan K.S. (2003). Phenotypic and genotypic characterization of bovine mastitis isolates ofStaphylococcus aureus for biofilm formation. Vet. Microbiol., 92: 179–185.CrossRefPubMedGoogle Scholar
  28. Von Eiff C., Heilmann C., Peters G. (1999). New aspects in the molecular basis of polymer-associated infections due to staphylococci. Eur. J. Clin. Microbiol. Infect. Dis., 18: 843–846.CrossRefGoogle Scholar
  29. White A., Handler P., Smith E.L. (1978). Enzymes I, nature, classification, kinetics, metabolic inhibitors: control of enzymatic activity. In: White A., Ed., Principles of Biochemistry, McGraw-Hill, Tokyo, pp. 196–230.Google Scholar
  30. Zmantar T., Chaieb K., Miladi H., Mahdouani K., Bakhrouf A. (2006). Detection of the intercellular adhesion loci (ica) in clinicalStaphylococcus aureus strains responsible for hospital acquired auricular infection. Ann. Microbiol., 56: 349–352CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  • Kamel Chaieb
    • 3
    • 1
  • Olfa Chehab
    • 1
  • Tarek Zmantar
    • 3
  • Mahmoud Rouabhia
    • 2
  • Kacem Mahdouani
    • 1
  • Amina Bakhrouf
    • 3
  1. 1.Laboratoire de BactériologieHôpital Régionale de KairouanTunisie
  2. 2.Groupe de Recherche en Écologie Buccale, Faculté de Médecine DentaireUniversité LavalQuébecCanada
  3. 3.Faculté de PharmacieLaboratoire d’Analyse et de Contrôle des Polluants Chimiques et Microbilogiques de l’EnvironnementMonastirTunisie

Personalised recommendations