Annals of Microbiology

, Volume 57, Issue 1, pp 9–14 | Cite as

Bacteriocins with anti-MRSA activity produced by water and soil isolated bacteria

  • Ratchaneewan Aunpad
  • Kesara Na-Bangchang
  • Duangnate Pipatsatitpong
Ecological and Environmental Microbiology Original Articles


Among a thousand of bacteria isolated from forty-three samples, ten isolated bacteria strain WARY1-6, WARY9-1, WARY9-2, WARY6-6, SOPB1, WARY9-10, WARY7-4, WASM9-25, SOPB8-91 and WAS14 with antimicrobial activity against methicillin resistantStaphylococcus aureus (MRSA) were selected for further study. The activity of crude active supernatant (CAS) from these isolated bacteria was completely lost after treated with pronase E, chymotrypsin and trypsin demonstrating its proteinaceous nature. These isolated bacteria could be regarded as bacteriocin producing bacteria (BAC). It was also found that CAS from five Gram-positive isolated bacteria strain WARY1-6, WARY9-1, WARY9-2, WARY6-6 and WASM9-25 showed a broad range of inhibition as they can inhibit at least five Gram-positive and two Gram-negative test microorganisms. Two Gram-negative bacteria can be regarded as BAC with a broad range against both Gram-positive and Gram-negative test bacteria. These seven isolated bacteria can be regarded as BAC with a broad range of antagonistic activity. One isolated bacteria strain SOPB1 harboured a single large plasmid name pSOPB1-19. Its bacteriocin production was associated with plasmid as analysed by plasmid extraction and curing experiment. The strain SOPB1 was identified asBacillus sphaericus according to its 16s rRNA gene sequence. Its bacteriocin was heat stable up to 121 °C, 15 min and active within the pH range of 6–9.

Key words

water and soil isolated bacteria anti-MRSA activity bacteriocin Bacillus sphaericus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banerjee S., Hansen J.N. (1988). Structure and expression of the gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem., 263: 9508–9514.PubMedGoogle Scholar
  2. Birnboim H.C., Doly J. (1979). A rapid alkaline extraction procedure for screening recombinant DNA. Nucleic. Acid. Res., 7: 1513–1523.CrossRefPubMedGoogle Scholar
  3. Brosius J., Palmer L.M., Kennedy P.J., Noller H. (1978) Complete nucleotide sequence of 16S ribosomal RNA gene fromEscherichia coli. Proc. Nat. Acad. Sci., 75: 4801–4805.CrossRefPubMedGoogle Scholar
  4. Cetinkaya S., Osmanaglogau O., Cokmus C. (2003). Bacteriocin diversity inBacillus sphaerius. Folia. Microbiol., 48: 157–161.CrossRefGoogle Scholar
  5. Cherif A., Chehimi S., Limem F., Hansen B.M., Hendriksen N.B., Daffonchio D., Boudabous A. (2003). Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer,Bacillus thuringiensis ssp.entomocidus HD9. J. Appl. Microbiol., 95: 990–1000.CrossRefPubMedGoogle Scholar
  6. Cokmus C., Yousten A.A. (1993). Bacteriocin production byBacillus sphaericus. J. Invert. Pathol., 61: 323–325.CrossRefGoogle Scholar
  7. Delves-Broughton J., Blackburn P., Evans R.J., Hungenh oltz, J. (1996). Applications of the bacteriocin, nisin. Antonie. Von. Leeuwenhoek., 69: 193–202.CrossRefGoogle Scholar
  8. Galvez A., Maqueda M., Cordovilla P., Martinez-Bueno M., Lebbadi M., Valdivia E. (1994). Characterization and biological activity againstNaegleria fowleri of amonebicins produced byBacillus licheniformis D-13. Antimicrob. Agents. Chemother., 38: 1314–1319.PubMedGoogle Scholar
  9. Kamoun F., Mejdoub H., Aouissaoui H., Reinbolt J., Hammami A., Jaous, S. (2005). Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced byBacillus thuringiensis. J. Appl. Microbiol, 98: 881–888.CrossRefPubMedGoogle Scholar
  10. Klaenhammer T.R. (1988). Bacteriocins of lactic acid bacteria. Biochemie., 70: 337–349CrossRefGoogle Scholar
  11. Klaenhammer T.R. (1993). Genetics of bacteriocin produced by lactic acid bacteria. FEM. Micriobiol. Rev., 12: 39–86.Google Scholar
  12. Korenblum E., von der Weid I., Santos A.L.S., Rosado A.S., Sebastian G.V., Coutinho C.M.L.M., Magalhaes F.C.M., de Paiva M.M., Seldin L. (2005). Production of antimicrobial substances byBacillus subtilis LFE-1,B. firmus H2O-1 andB. licheniformis T6-5 isolated from an oil reservoir in Brazill. J. Appl. Microbiol., 98: 667–675.CrossRefPubMedGoogle Scholar
  13. Krishnan P.U., Miles K., Sketty N. (2002). Detection of methicillin and mupirocin resistance inStaphylococcus aureus isolates using conventional and molecular methods: a descriptive study from a burns unit with high prevalence of MRSA. J. Clin. Patho., 55: 745–748.CrossRefGoogle Scholar
  14. Oscariz J.C., Lasa I., Pisabarro A.G. (1999). Detection and characterization of cerecin 7, a new bacteriocin produced byBacillus cereus with a braod spectrum of activity. FEM. Micriobiol. Lett., 178: 337–341.CrossRefGoogle Scholar
  15. Padilla C., Lobos O., Brevis P., Abaca P., Hubert E. (2006). Plasmid-mediated bacteriocin production byShigella flexneri isolated from dysenteric diarrhea and their transformation intoEscherichia coli. Lett. Appl. Microbiol., 42: 300–303.CrossRefPubMedGoogle Scholar
  16. Pattnaik P., Grover S., Batish V.K. (2005). Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin-like compound produced byBacillus licheniformis 26L-10/3RA. Microbiol. Res., 160: 213–218.CrossRefPubMedGoogle Scholar
  17. Perez C., Suarez C., Castro G.R. (1992). Production of antimicrobials byBacillus subtilis MIR 15. J. Biotechnol., 26: 331–336.CrossRefPubMedGoogle Scholar
  18. Perez, C., Suzrez, C., Castro, C.R. (1993). Antimicrobial activity determined in strains ofBacillus circulans cluster. Folica. Microbiol., 38(1): 25–28.CrossRefGoogle Scholar
  19. Prasad S., Morris P.C., Hansen R., Meaden P.G., Austin B. (2005). A novel bacteriocin-like substance (BLIS) from a pathogenic strain ofVibrio harveyi. Microbiology., 151(9): 3051–3058.CrossRefPubMedGoogle Scholar
  20. Rosado A.S., Seldin L. (1993). Production of a potentially novel anti-microbial substance byBacillus polymyxa. World. J. Microbiol. Biotechnol., 9: 521–528.CrossRefGoogle Scholar
  21. Schmitz F.J., Lindenlauf E., Hofman B., Fluit A.C., Verhoef J., Heinz H.P., Jones M.E. (1998). The prevalence of low- and high-level mupirocin resistance inStaphylococci from 19 European hospitals. J. Antimicrob. Chemther., 42: 489–495.CrossRefGoogle Scholar
  22. Sharma N., Kapoor G., Neopaney B. (2006). Characterization of a new bacteriocin produced from a novel isolated strain ofBacillus lentus NG121. Antonie. Von. Leeuwenhoek Apr., 25.Google Scholar
  23. Stahl S.R. (1991) Plasmid inBacillus stearothermophilus coding for bacteriocinogeny and temperature resistance. Plasmid, 26: 94–107.CrossRefPubMedGoogle Scholar
  24. Tagg J.R., McGiven A.R. (1971) Assay system for bacteriocins. Appl. Microbiol., 21: 943.PubMedGoogle Scholar
  25. Yilmaz M., Soran H., Beyatil Y. (2006). Antimicrobial activities of someBacillus spp. strain isolated from the soil. Microbiol. Res., 161: 127–131.CrossRefPubMedGoogle Scholar

Copyright information

© University of Milan and Springer 2007

Authors and Affiliations

  • Ratchaneewan Aunpad
    • 1
  • Kesara Na-Bangchang
    • 1
  • Duangnate Pipatsatitpong
    • 2
  1. 1.Graduate Program in Biomedical Sciences, Faculty of Allied Health ScienceThammasat UniversityPathumthaniThailand
  2. 2.Department of Medical Technology, Faculty of Allied Health ScienceThammasat UniversityPathumthaniThailand

Personalised recommendations