Advertisement

Annals of Microbiology

, Volume 56, Issue 4, pp 393–398 | Cite as

Immunocytochemical characterisation of endophytic bacteriaAzospirillum brasilense, Herbaspirillum seropedicae, Burkholderia ambifaria andGluconacetobacter diazotrophicus

  • Antonella Canini
  • Lorena Canuti
  • Maria Grilli Caiola
  • Maddalena Del Gallo
Methods Original Articles
  • 70 Downloads

Abstract

In the present work an immunocytochemical characterisation of four endophytic bacterial species has been made by using polyclonal antiserum produced against each of the four bacterial strains previously heated at 60 °C. The aim of this researchsito identify common elements among bacteria associated with their endophytic behaviour. Analysis of extracts of each strain by immunoblotting and ELISA confirmed the presence of proteins from different bacterial strains made up of common epitopes. However, antisaproduced againstHerbaspirillum seropedicae andBurkholderia ambifaria show a high number of bands recognised on each extracts, while antisera againstAzospirillum brasilense andGluconacetobacter diazotrophicus show a low number of bands recognised on each extract. Immunogold labelling showed that epitopes are located both on the cell wall and in the cytoplasm; most likely they could be preursor cell wall proteins synthesized inside the cytoplasm and subsequently transported onto cell wall. Finally, the common bands amog bacterial strains revealed by immunoblotting could play a role as active hydrolases involved in host tissue penetration.

Key words

endophytic bacteria immunogold labelling Western Blotting ELISA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baldani J.I., Baldani V.I.D., Seldin L., Döbereiner J. (1986). Characterization ofHerbaspirillum seropedicae gen. nov., sp. nov.: a root-associated nitrogen-fixing bacterium. Int. J. Syst. Bacteriol., 36: 86–93.Google Scholar
  2. Bar T., Okon Y. (1992). Tryptophan conversion to indole-3-acetic acid via indole-3-acetamide inAzospirillum brasilense Sp7. Can. J. Microbiol. 39: 81–86.Google Scholar
  3. Bradford M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248–254.CrossRefPubMedGoogle Scholar
  4. Burbage D.A., Sasser M. (1982). A medium selective forPseudomonas cepacia. Phytopathology, Abstract 72: 706.Google Scholar
  5. Burdman S, De Mot R., Vanderleyden J., Okon Y., Jurkevitch E. (2000). Identification and characterization of theomaA gene encoding the major outer membrane protein ofAzospirillum brasilense. DNA Sequence, 11: 225–257.CrossRefPubMedGoogle Scholar
  6. Burdman S., Dulguerova G., Okon Y., Jurkevitch E. (2001). Purification of the major outer membrane protein ofAzospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol. Plant-Microb. Inter., 14: 555–561.CrossRefGoogle Scholar
  7. Caballero-Mellado J., Carcaño-Montiel M.G., Mascarua-Esparza M.A. (1992). Field inoculation of wheat (Triticum aestivum) withAzospirillum brasilense Google Scholar
  8. Laemmli U.K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680–685.CrossRefPubMedGoogle Scholar
  9. Leclerc D., Asselin A. (1989). Detection of bacterial cell wall hydrolases after denaturing polyacrylamide gel electrophoresis. Can. J. Microbiol., 35: 749–753.CrossRefPubMedGoogle Scholar
  10. Leonardi D., Canini A., Forni C. (1993). Immunological comparison betweenArthrobacter isolates and bacteria living inAzolla filiculoides Lam Symbiosis, 15: 269–283.Google Scholar
  11. Lerouxel O., Cavalier D.M., Liepman A.H., Keeqstra K. (2006). Biosynthesis of plant cell wall polysaccharides — a complex process. Curr. Opin. Plant Biol., in press.Google Scholar
  12. Martinez-Dretz G., Del Gallo M., Burpee C., Burris R.H. (1984). Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla. J. Bacteriol. 159: 80–85.Google Scholar
  13. Michiels K., Croes C., Vanderleyden J. (1991). Two different modes of attachment ofAzospirillum brasilense Sp7 to wheat roots. J. Gen. Microbiol. 137: 2241–2246.Google Scholar
  14. Morgan J.A.W., Whipps J.M. (2001). Methodological approaches to the study of the rhizosphere carbon flow and microbial population dynamics. In: Pinton R., Varanini Z., Nannipieri P., Eds, The Rhizosphere: Biochemistry and Organic Substances at the Soil-Plant Interface. Marcel Dekker, New York, pp. 373–409.Google Scholar
  15. Nakamura Y., Umemoto T., Nakatani Y., Namikawa I., Wadood A. (1993). Common and specific antigens of several treponemes detected by polyclonal antisera against major cellular proteins. Oral Microbiol. Immunol., 8: 288–294.CrossRefPubMedGoogle Scholar
  16. Olivares F.L., Baldani V.L.D., Reis V.M., Baldani J.I., Döbereiner J. (1996). Occurrence of the endophytic diazotrophsHerbaspirillum spp. in roots, stems and leaves, predominantly of Gramineae. Biol. Fertil. Soils, 21: 197–200.CrossRefGoogle Scholar
  17. Parke J.L., Gurian-Sherman D. (2001). Diversity of theBurkolderia cepacia complex and implications for risk assessments of biological control strains. Ann. Rev. Phytopathol., 39: 225–258.CrossRefGoogle Scholar
  18. Patrick C.C., Plaunt M.R., Sweet S.M., Patrick G.S. (1990). DefiningStaphylococcus epidermidis cell wall proteins. J. Clin. Microbiol., 28: 2757–2760.PubMedGoogle Scholar
  19. Rambelli A. (1973). The rhizosphere of mycorrhizae. In: Marks G.L., Koslowski T.T., Eds., Ectomycorrhizae, their Ecology and Ehysiology. Academic Press, New York, pp. 299–349.Google Scholar
  20. Reinhold-Hurek B., Hurek T. (1998). Life in grasses: diazotrophic endophytes. Trends Microbiol. 6: 139–144.CrossRefPubMedGoogle Scholar
  21. Reynolds E.S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol., 17: 208–212.CrossRefPubMedGoogle Scholar
  22. Sprent J.I., James E.K. (1995). N2-fixation by endophytic bacteria: questions of entry and operation. In: Fendrik I., Del Gallo M., Vanderleyden J., De Zamaroczy M., Eds,Azospirillum VI and Related Microganisms, Heidelberg: Sprinter-Verlag, Berlin, pp. 15–30.Google Scholar
  23. Urquiaga S., Cruz K.H.S., Boddey R.M. (1992). Contribution of nitrogen fixation to sugar cane: Nitrogen-15 and nitrogen balance estimates. Soil Sci. Soc. Am. J., 56: 105–114.CrossRefGoogle Scholar
  24. Whipps J.M. (1990). Carbon economy. In: Linch J.M., Ed., The Rizosphere, Chichester Wiley J. and Sons, New York, pp. 59–97.Google Scholar
  25. Whipps J.M. (2001). Microbial interaction and biocontrol in the rhizosphere. J. Exper. Botany, 52: 487–511.Google Scholar
  26. Whipps J.M., Lumsden R.D. (2001). Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T., Jackson C., Magan N., Eds, Fungal biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp. 9–22.Google Scholar
  27. Yamada Y., Hoshino K., Ishikawa T. (1997). The phylogeny of acetic acid bacteria based on the partial sequences of 16S Ribosomial RNA: the elevation of the subgenusGluconacetobacter to the generic level. Biosci. Biotech. Biochem., 61: 1244–1251.CrossRefGoogle Scholar

Copyright information

© University of Milan and Springer 2006

Authors and Affiliations

  • Antonella Canini
    • 1
  • Lorena Canuti
    • 1
  • Maria Grilli Caiola
    • 1
  • Maddalena Del Gallo
    • 2
  1. 1.Dipartimento di BiologiaUniversità di Roma Tor VergataRomaItaly
  2. 2.Dipartimento di Biologia di Base e ApplicataUniversità dell’AquilaL’AquilaItaly

Personalised recommendations