Explicit formulas for biharmonic submanifolds in non-Euclidean 3-spheres



We obtain the parametric equations of all biharmonic Legendre curves and Hopf cylinders in the 3-dimensional unit sphere endowed with the modified Sasakian structure defined byTanno.

2000 Mathematics Subject Classification

53C42 53B25 

Key words and phrases

Biharmonic submanifolds Sasakian space forms Legendre curves Hopf cylinders 


  1. [1]
    C. Baikoussis andD. E. Blair, On the geometry of 7-sphere.Results in Math. 27 (1995), 5–16.MATHMathSciNetGoogle Scholar
  2. [2]
    C. Baikoussis, D. E. Blair, andT. Koufogiorgos, Integral submanifolds of Sasakian space forms M7.Results in Math. 27 (1995), 207–226.MathSciNetGoogle Scholar
  3. [3]
    A. Balmuş, On the biharmonic curves of the Euclidean and Berger 3-dimensional spheres.Sci. Ann. USAMV Iaşi 47 (2) (2004), Proc. of the annual Symposium on “Mathematics applied in Biology & Biophysics”, May 28–29, 2004, Iaşi, 87–96.Google Scholar
  4. [4]
    D. E. Blair,Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics, Volume203, Birkhäuser Boston, 2002, pp. x, 260.Google Scholar
  5. [5]
    R. Caddeo, S. Montaldo, andC. Oniciuc, Biharmonic submanifolds of S3.Internat. J. Math. 12 (2001), 867–876.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    —, Biharmonic submanifolds in spheres.Israel J. Math. 130 (2002), 109–123.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    R. Caddeo, S. Montaldo, C. Oniciuc, andP. Piu, The clasification of biharmonic curves of Cartan-Vranceanu 3-dimensional spaces. In:Modern Trends in Geometry and Topology, Deva, September 5–11, 2005, pp. 121–131.Google Scholar
  8. [8]
    —, The Euler-Lagrange method for biharmonic curves.Mediterr. J. Math. 3 (2006), 449–465.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    R. Caddeo, C. Oniciuc, andP. Piu, Explicit formulas for non-geodesic biharmonic curves of the Heisenberg group.Rend. Sem. Mat. Univ. e Politec. Torino 62 (2004), 265–278.MATHMathSciNetGoogle Scholar
  10. [10]
    -, Looking for biharmonic non-geodesic curves in SO(2)-isotropic three-dimensional manifolds. Poster, Conference “Curvature in Geometry” in honour of Prof. Lieven Vanhecke, June 11–14, 2003, Lecce.Google Scholar
  11. [11]
    B. Y. Chen, A report on submanifolds of finite type.Soochow J. Math. 22 (1996), 117–337.MATHMathSciNetGoogle Scholar
  12. [12]
    B. Y. Chen andS. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces.Kyushu J. Math. 52 (1998), 167–185.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J. T. Cho, J. Inoguchi, andJ. E. Lee, Biharmonic curves in 3-dimensional Sasakian space forms.Ann. Math. Pura Appl. 186 (2007), 685–701.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Eells andJ. H. Sampson, Harmonic mappings of Riemannian manifolds.Amer. J. Math. 86 (1964), 109–160.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    J. Inoguchi, Submanifolds with harmonic mean curvature in contact 3-manifolds.Colloq. Math. 100 (2004), 163–179.MATHCrossRefMathSciNetGoogle Scholar
  16. [16]
    G. Y. Jiang, 2-harmonic maps and their first and second variational formulas.Chinese Ann. Math. Ser. A7 (4) (1986), 389–402.Google Scholar
  17. [17]
    S. Montaldo andC. Oniciuc, A short survey on biharmonic maps between Riemannian manifolds.Rev. Un. Mat. Argentina 47 (2006), no. 2, 1–22.MATHMathSciNetGoogle Scholar
  18. [18]
    K. Ogiue, On fiberings of almost contact manifolds.Kōdai Math. Sem. Rep. 17 (1965), 53–62.MATHCrossRefMathSciNetGoogle Scholar
  19. [19]
    Y-L. Ou andZ-P. Wang, Biharmonic maps into Sol and Nil spaces. arXiv:math.DG/0612329vl.Google Scholar
  20. [20]
    The Bibliography of Biharmonic Maps. http://beltrami.sc.unica.it/biharmonic/Google Scholar
  21. [21]
    S. Tanno, The topology of contact Riemannian manifolds.Ill. J. Math. 12 (1968), 700–717.MATHMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 2007

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University of IaşiIasiRomânia
  2. 2.Faculty of Mathematics“Al. I. Cuza” University of IaşiIasiRomânia

Personalised recommendations