Advertisement

Artin prime producing quadratics

  • P. Moree
Article

Abstract

Fix an integerg. The primesp such thatg is a primitive root forp are calledArtin primes. Using a mixture of heuristics, well-known conjectures and rigorous arguments an algorithm is given to find quadratics that produce many Artin primes. Using this algorithmY. Gallot has found ag and a quadraticf such that the first 31082 primes produced byf haveg as a primitive root. There is a connection with finding integersd such thatL(2, (d/·)) is small.

2000 Mathematics Subject Classification

11Y55 11A07 11B83 

References

  1. [1]
    S. Arms, Á. Lozano-Robledo, andS. J. Miller, Constructing elliptic curves over ℚ(T) with moderate rank.J. Number Theory 123 (2007), 388–402.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    P. T. Bateman andR. A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers.Math. Comp. 16 (1962), 363–367.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    N. G. W. H. Beeger, Report on some calculation of prime numbers.Nieuw Archief Wisk. 20 (1939), 48–50.MATHMathSciNetGoogle Scholar
  4. [4]
    O. Bottema andS. C. van Veen, Calculation of probabilities in the game of billiards. II. (Dutch).Nieuw Arch. Wiskunde (2)22 (1946), 123–158.MathSciNetGoogle Scholar
  5. [5]
    H. Cohen, High precision computation of Hardy-Littlewood constants. Draft of a preprint (see his homepage).Google Scholar
  6. [6]
    R. Fueter, Über primitive Wurzeln von Primzahlen.Comment. Math. Helv. 18 (1946), 217–223.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. W. Fung andH. C. Williams, Quadratic polynomials which have a high density of prime values.Math. Comp. 55 (1990), 345–353.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    A. Granville andR. A. Mollin, Rabinowitsch revisited.Acta Arith. 96 (2000), 139–153.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    E. Grosswald,Topics from the theory of numbers. 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 1984.MATHGoogle Scholar
  10. [10]
    G. H. Hardy andJ. E. Littlewood, Partitio numerorum III: On the expression of a number as a sum of primes.Acta Math. 44 (1923), 1–70.CrossRefMathSciNetGoogle Scholar
  11. [11]
    D. R. Heath-Brown, Artin’s conjecture for primitive roots.Quart. J. Math. Oxford Ser. 37 (1986), 27–38.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    K. Ireland andM. Rosen,A classical introduction to modern number theory. 2nd ed., Graduate Texts in Mathematics84, Springer-Verlag, New York, 1990.Google Scholar
  13. [13]
    M. J. Jacobson andH. C. Williams, New quadratic polynomials with high densities of prime values.Math. Comp. 72 (2003), 499–519.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    D. H. Lehmer, A note on primitive roots.Scripta Math. 26 (1963), 117–119.MATHMathSciNetGoogle Scholar
  15. [15]
    R. F. Lukes, C. D. Patterson, andH. C. Williams, Numerical sieving devices: their history and some applications.Nieuw Arch. Wisk 13 (1995), 113–139.MATHMathSciNetGoogle Scholar
  16. [16]
    K. R. Matthews, A generalization of Artin’s conjecture for primitive roots.Acta Arith. 29 (1976), 113–146.MATHMathSciNetGoogle Scholar
  17. [17]
    R. A. Mollin, Prime-producing quadratics.Amer. Math. Monthly 104 (1997), 529–544.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    P. Moree, Problem 1097.Elem. Math. 50 (1995), p. 82. (Solution 51 (1996), 81–82.)Google Scholar
  19. [19]
    —, Approximation of singular series and automata.Manuscripta Math. 101 (2000), 385–399.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    —, Asymptotically exact heuristics for (near) primitive roots.J. Number Theory 83 (2000), 155–181.MATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    L. Murata, On the magnitude of the least prime primitive root.J. Number Theory 37 (1991), 47–66.MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    S. C. van Veen, Probability problems in throwing dice. (Dutch),Nieuw Arch. Wiskunde 17 (1932), 120–136, 209–239.Google Scholar
  23. [23]
    G. Wertheim, Primitiven Wurzeln der Primzahlen von der Form 2x q λ+1, in welcherq = 1 oder eine ungerade Primzahl ist.Acta Math. 20 (1895), 143–152.CrossRefMathSciNetGoogle Scholar

Copyright information

© Mathematische Seminar 2007

Authors and Affiliations

  1. 1.Max-Planck-Institut für MathematikBonnDeutschland

Personalised recommendations