Skip to main content
Log in

Learning about students’ knowledge and thinking in science through large-scale quantitative studies

  • Published:
European Journal of Psychology of Education Aims and scope Submit manuscript

Abstract

The main issue addressed in this article is that there is much to learn about students’ knowledge and thinking in science from largescale international quantitative studies beyond overall score measures. Response patterns on individual or groups of items can give valuable diagnostic insight into students’ conceptual understanding, but there is also a danger of drawing conclusions that may be too simple and nonvalid. We discuss how responses to multiple-choice items could be interpreted, and we also show how responses on constructed-response items can be systematised and analysed. Finally, we study, empirically, interactions between item characteristics and student responses. It is demonstrated that even small changes in the item wording and/or the item format may have a substantial influence on the response pattern. Therefore, we argue that interpretations of results from these kinds of studies should be based on a thorough analysis of the actual items used. We further argue that diagnostic information should be an integrated part of the international research aims of such large-scale studies. Examples of items and student responses presented are taken from The Third International Mathematics and Science Study (TIMSS).

Résumé

L’article met à jour le fait que les études quantitatives internationales à grande échelle nous disent beaucoup, au-delà des mesures générales de scores, sur les connaissances et les pensées des élèves par rapport aux sciences. Les patterns des réponses données à des items individuels ou bien à des groupes d’items peuvent nous éclairer sur la compréhension conceptuelle des élèves, mais risquent de conduire à des conclusions trop simples et non-valides. On discute les moyens de systématiser et d’analyser les réponses à des items à choix multiple. Enfin, on étudie empiriquement les interactions entre certains caractéristiques des items et les réponses des élèves. On montre qu’il suffit d’une petite modification dans la manière de formuler et/ou formater l’item pour produire un effet substantiel dans le pattern de la réponse. Il s’ensuit que l’interprétation des résultats provenant de ce type d’études doit être basée sur une analyse approfondie des items administrés. Il s’ensuit également que l’information diagnostique peut être une partie constitutive des objectifs de recherche internationaux qu’on cherche à réaliser par ce type d’études à grande échelle. Les exemples présentés d’items et de réponses des élèves sont extraits de la Third International Mathematics and Science Study (TIMSS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Angell, C. (1996).Elevers fysikkforståelse. En studie basert på utvalgte fysikkoppgaver i TIMSS [Students’ understanding of physics. A study based on selected physics items in TIMSS]. PhD Thesis, University of Oslo.

  • Angell, C., Kjærnsli, M., & Lie, S. (1999).Hva i all verden skjer i realfagene i videregående skole? National TIMSS report population 3. Oslo: Universitetsforlaget.

    Google Scholar 

  • Angell, C., Kjaernsli, M., & Lie, S. (2000). Exploring students responses on free-response science items in TIMSS. In D. Shorrocks-Taylor & E.W. Jenkins (Eds.),Learning from others (pp. 159–187). Dordrecht: Kluwer.

    Google Scholar 

  • Boyes, E., & Stanisstreet, M. (1993). The “greenhouse effect”: Children’s perception of causes, consequences and cures.International Journal of Science Education, 15, 531–552.

    Article  Google Scholar 

  • Boyes, E., & Stanisstreet, M. (1994). The ideas of secondary school children concerning ozone layer damage.Global Environmental Change, 4, 311–324.

    Article  Google Scholar 

  • Clerk, D., & Rutherford, M. (2000). Language as confounding variable in the diagnosis of misconceptions.International Journal of Science Education, 22, 703–717.

    Article  Google Scholar 

  • DiSessa, A.A. (1993). Toward an epistemology of physics.Cognition and Instruction, 10, 105–225.

    Google Scholar 

  • Driver, R., & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science students.Studies in Science Education, 5, 61–83.

    Article  Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom.Educational Researcher, 23, 5–12.

    Google Scholar 

  • Duit, R., & Treagust, D.F. (1995). Students’ conceptions and constructivist teaching approaches. In B.J. Fraser & H.J. Walberg (Eds.),Improving science education. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Fraser, B.J., & Tobin, K.G. (1998).International handbook of science education (2 vols.). Dordrecht: Kluwer.

    Google Scholar 

  • Gilbert, J.K., Osborne, J., & Fensham, P.J. (1982). Children’s science and its consequences for teaching.Science Education, 66, 623–633.

    Article  Google Scholar 

  • Gisselberg, K., Kjærnsli, M., Lie, S., & Weng, P. (1996).Preliminary notes from a Nordic study on item formats in TIMSS. Unpublished manuscript.

  • Halloun, I.A., & Hestenes, D. (1985). Common sense concepts about motion.American Journal of Physics, 53, 1056–1065.

    Article  Google Scholar 

  • Harlen, W. (1999).Effective teaching of science, A review of research. Edinburgh, UK: Scottish Council for Research in Education.

    Google Scholar 

  • Hennessey, S. (1993). Situated cognition and cognitive apprenticeship: Implications for classroom learning.Studies in Science Education, 22, 1–41.

    Article  Google Scholar 

  • Kjærnsli, M., Lie, S., Stokke, K.H., & Turmo, A. (1999).Hva i all verden kan elevene i naturfag? [What do students know in science?]. Oslo: Universitetsforlaget.

    Google Scholar 

  • Kupier, J. (1994). Students ideas of science concepts: Alternative framework?International Journal of Science Education, 16, 279–292.

    Article  Google Scholar 

  • Laws, P.M. (1996). Undergraduate science education: A review of research.Studies in Science Education, 28, 1–85.

    Article  Google Scholar 

  • Lie, S., Kjærnsli, M., & Brekke, G. (1997).Hva i all verden skjer i realfagene? National TIMSS report population 2. Oslo: Universitetsforlaget.

    Google Scholar 

  • Lie, S., Taylor, A., & Harmon, M. (1996). Scoring techniques and criteria. In M.O. Martin & D.L. Kelly (Eds.),Third international mathematics and science study. Technical report: Vol. 1. Design and development (chap. 7, pp. 1–16). Chestnut Hill, MA: Boston College.

    Google Scholar 

  • Minstrell, J. (1992). Facets of students’ knowledge and relevant instruction. In R. Duit, F. Goldberg, & J. Niedderer (Eds.),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop held at the University of Bremen (pp. 110–128). Kiel: Institute for Science Education, University of Kiel.

    Google Scholar 

  • Nielsen, H., & Thomsen, P.V. (1983).Hverdagsforestillinger om fysik [Everyday conceptions in physics]. Århus: University of Århus.

    Google Scholar 

  • Osborne, R., & Freyberg, P. (1985).Learning in science. The implication of children’s science. Auckland: Heineman.

    Google Scholar 

  • Pfundt, H., & Duit, R. (1994).Bibliography. Students’ alternative frameworks and science education (4th ed.). Kiel: Institute for Science Education, University of Kiel.

    Google Scholar 

  • Schoultz, J. (2000). Conceptual knowledge in talk and text: What does it take to understand a science question? InAtt samtala om/i naturvetenskap. Kommunikation, kontext och artefakt. PhD thesis (partly in English), University of Linkoping.

  • Scott, P.H. (1992). Pathways in learning science: A case study of the development of one student’s ideas relating to the structure of matter. In R. Duit, F. Goldberg, & J. Niedderer (Eds.),Research in physics learning: Theoretical issues and empirical studies. Proceedings of an international workshop held at the University of Bremen (pp. 203–224). Kiel: Institute for Science Education, University of Kiel.

    Google Scholar 

  • Smith, T.A., Martin, M.O., Mullis, I.V.S., & Kelly, D.L. (2000).Profiles of student achievement in science at the TIMSS international benchmarks: U.S. performance and standards in an international context. Chestnut Hill, MA: Boston College.

    Google Scholar 

  • Tamir, P. (1990). Justifying the selection of answers in multiple choice items.International Journal of Science Education, 12, 563–573.

    Article  Google Scholar 

  • Thorseng, H. (1997).Sporsmål og svar i naturfag [Questions and responses in science]. MSc Thesis, University of Oslo.

  • Vygotsky, L. (1986).Thought and language. Cambridge MA: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf V. Olsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsen, R.V., Turmo, A. & Lie, S. Learning about students’ knowledge and thinking in science through large-scale quantitative studies. Eur J Psychol Educ 16, 403–420 (2001). https://doi.org/10.1007/BF03173190

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03173190

Key words

Navigation