Advertisement

European Journal of Psychology of Education

, Volume 16, Issue 2, pp 141–161 | Cite as

The solution of compare problems among first-grade students

  • Jacinthe Giroux
  • Anik Ste-Marie
Article

Abstract

This study attempts to specify the relational calculi that young students elaborate for solving compare problems, which have been identified as being among the most difficult of the addition problems. Based on an integration of hypotheses and models from research attempting to account for problem-solving activity on these problems, an a priori analysis makes explicit the relational calculi capable of leading to the solution of six compare problems. This analysis provides a foundation for an analysis of protocols, which were collected from 25 first-grade students solving and reformulating compare problems. The results highlight the dynamic character of the structuring and arithmetizing processes in setting up the relationships within a problem. Thus, the numerical calculi employed are interpreted as a function of the structure of the problem and, in turn, the situation described by the problem derives its meaning from a knowledge of the arithmetic operations activated by the numerical calculi.

Key words

Addition problems Compare problems Numerical calculus Operationalization processes Relational calculus Structuring processes 

Résumé

L’étude présentée dans cet article vise à preciser les calculs relationnels elaborés par des jeunes élèves pour résoudre des problèmes de comparaison d’états, lesquels sont indentifiés, par les études effectuées dans ce domaine, parmi les plus difficiles des problèmes additifs. Cette étude procède d’une intégration d’hypothèses et de modèles issus de recherches visant à rendre compte de l’activité de résolution de ces problèmes. Une analyse a priori spécifiant les calculs relationnels pouvant mener à la résolution de six problèmes de comparaison sert d’assise à une analyse de protocoles recueillis auprès de 25 élèves de première année primaire en contexte de résolution et de formulation de problèmes de comparaison d’états. Les résultats mettent en évidence le caractère dynamique des processus de structuration et d’arithmétisation des relations à établir. Ainsi, les calculs numériques mis en oeuvre prennent une signification au regard de la structure du problème et, en retour, la situation décrite par le problème prend une signification au regard des connaissances sur les opérations mobilisées par les calculs numériques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilsky, L.H., & Judd, T. (1986). Sources of difficulty in the solution of verbal arithmetic problems by mentally retarded and non retarded individuals.American Journal of Mental Deficiency, 90, 395–402.Google Scholar
  2. Brousseau, G. (1986). Fondements et méthode de la didactique des mathématiques.Recherches en Didactique des Mathématiques, 7, 33–115.Google Scholar
  3. Brun, J. (1990). La résolution de problèmes arithmétiques: Bilan et perspectives.Math École, 141, 3–14.Google Scholar
  4. Carpenter, T.P., & Moser, F. (1982). The development of addition and subtraction problem-solving skills. In T.P. Carpenter, J.M. Moser, & T.A. Romberg (Eds.),Addition and subtraction: A cognitive perspective (pp. 9–37), Hillsdale, NJ: Erlbaum.Google Scholar
  5. Carpenter, T.P., Hiebert, J., & Moser, F. (1981). Problem structure and first-grade children’s initial solution process for simple addition and subtraction problems.Journal of Research in Mathematics Education, 12, 27–39.CrossRefGoogle Scholar
  6. Conne, F. (1985). Calculs numériques et calculs relationnels dans la résolution de problèmes d’arithmétique.Recherches en Didactique des Mathématiques, 5, 269–332.Google Scholar
  7. Deblois, L. (1997). Quand additionner et soustraire implique comparer.Éducation et Francophonie, 25, 102–120. (http://www.acelf.ca/revue)Google Scholar
  8. De Corte, E., & Verschaffel, L. (1987). The effect of semantic structure on first graders’ strategies for solving addition and subtraction word problems.Journal of Research in Mathematics Education, 18, 363–381.CrossRefGoogle Scholar
  9. Ehrlich, S. (1990).Sémantique et mathématique: Apprendre/Enseigner l’arithmétique simple. Paris: Nathan.Google Scholar
  10. Fayol, M. (1990).L’enfant et le nombre: Du comptage à la résolution de problèmes. Paris: Delachaux et NiestléGoogle Scholar
  11. Fischer, J.P. (1993). La résolution des problèmes arithmétiques verbaux: Propositions pour un enseignement pro-actif.Annales de Didactique et de Sciences Cognitives, 5, 177–210.Google Scholar
  12. Fuson, K. (1988).Children’s counting and concepts of number. New York: Springer-Verlag.Google Scholar
  13. Fuson, K. (1991). Relations entre comptage et cardinalité chez les enfants de 2 à 8 ans. In J. Bideaud, C. Meljac, & J.P. Fischer (Eds.),Les chemins du nombre (pp. 159–179). Lille: Presses Universitaires de Lille.Google Scholar
  14. Giroux, J., & Lemoyne, G. (1998). Coordination of knowledge of numeration and arithmetic operations in first grade students.Educational Studies in Mathematics, 35, 283–301.CrossRefGoogle Scholar
  15. Julo, J. (1995).Représentation des problèmes et réussite en mathématiques. Rennes: Presses Universitaires de Rennes.Google Scholar
  16. Lewis, A.B. (1989). Training students to represent arithmetic word problems.Journal of Educational Psychology, 81, 521–531.CrossRefGoogle Scholar
  17. Lewis, A.B., & Mayer, R. (1987).Students’ miscomprehension of relational statements in arithmetic word problem.Google Scholar
  18. Kamii, C. (1990).Les jeunes enfants réinventent l’arithmétique. Berne: Peter Lang.Google Scholar
  19. Nesher, P. (1982). Levels of descriptions in the analysis of addition and subtraction word problems. In T.P. Carpenter J.M. Moser, & T.A. Romberg (Eds.),Addition and subtraction: A cognitive perspective (pp. 25–38). Hillsdale, NJ: Erlbaum.Google Scholar
  20. Piaget, J., & Szeminska, A. (1941).La genèse du nombre chez l’enfant. Neuchâtel: Delachâux et Niestlé.Google Scholar
  21. Ryley, M.S., Greeno, J.G., & Heller, J.I. (1983). Development of children’s problem-solving ability in arithmetic. In H.P. Ginsburg (Eds.),The development of mathematical thinking (pp. 153–196). New York: Academic Press.Google Scholar
  22. Ryley, M.S., & Greeno, J. (1988). Developmental analysis of understanding language about quantities and of solving problems.Cognition and Instruction, 5, 49–101.CrossRefGoogle Scholar
  23. Steffe, L. (1991). Stades d’apprentissage cans la construction de la suite des nombres. In J. Bideaud, C. Meljac, & J.P. Fischer (Eds.),Les chemins du nombre (pp. 113–132). Lille: Presses Universitaires de Lille.Google Scholar
  24. Studer, C. (1994). Une catégorie de problèmes additifs: Les problèmes de comparaison de 1P à 4P.Mémoire de licence inédit. Genève: Université de Genève.Google Scholar
  25. Vergnaud, G. (1982). A classification of cognitive tasks and operations of thought involved in addition and subtraction problems. In T.P. Carpenter, J.M. Moser, & T.A. Romberg (Eds.),Addition and subtraction: A cognitive perspective (pp. 39–59). Hillsdale, NJ: Erlbaum.Google Scholar
  26. Vergnaud, G. (1985).L’enfant, la mathématique et la réalité, Berne: Peter Lang.Google Scholar
  27. Vergnaud, G. (1991). L’appropriation du concept du nombre: Un processus de longue haleine. In J. Bideaud, C. Meljac, & J.P. Fischer (Eds.),Les chemins du nombre (pp. 271–282). Lille: Presses Universitaires de Lille.Google Scholar
  28. Vergnaud, G., & Durand, C. (1976). Structures additives et complexité psychogénétique.Revue Française de Pédagogie, 36, 28–43.CrossRefGoogle Scholar
  29. Verschaffel, L. (1994). Using retelling data to study elementary school children’s representations and solutions of compare problems.Journal of Research in Mathematics Education, 25, 141–165.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisbon, Portugal/ Springer Netherlands 2001

Authors and Affiliations

  1. 1.Département des Sciences de l’EducationUniversité du Québec à MontréalMontréalCanada

Personalised recommendations