Advertisement

European Journal of Psychology of Education

, Volume 23, Issue 3, pp 275–294 | Cite as

Studying mathematics problem-solving classrooms. A comparison between the discourse of in-service teachers and student teachers

  • Javier Rosales
  • Josetxu Orrantia
  • Santiago Vicente
  • Jose M. Chamoso
Article

Abstract

In the article we compare the approaches of 3 in-service teachers and 3 student teachers when they tried to solve a verbal arithmetic problem in the classroom. Each interaction was studied using a System of Analysis that takes into account the cognitive processes involved in the solution of a mathematic problem and describes the interaction at different levels showing what is done and to what degree teachers and/or pupils are responsible for what is done. The results of the study suggest that both groups of teachers are different in how they direct the student’s attention toward the essential aspects implied in the resolution of word problem. On the one hand, the in-service teachers guaranteed students’ understanding of the problem before dealing with the solution, while students teachers only did so when pupils committed errors. On the other hand, the in-service teachers allowed a high level of student participation, while student teachers took a more prominent role so children’s participation was lower.

Key words

Classroom interaction Expert and novice teachers Word problem solving 

Résumé

L’interaction de 3 professeurs expérimentés et de 3 professeurs débutants lors de la résolution d’un problème arithmétique verbal avec leurs étudiants dans la classe est analysée dans cet article. Chaque interaction a été étudiée au moyen d’un système d’analyse qui tient compte des processus cognitifs impliqués dans la résolution de problèmes mathématiques et qui décrit l’interaction à différents niveaux, démontrant ce qui est fait et la mesure dans laquelle les professeurs et les étudiants sont responsables de ce qui est fait. Les résultats de l’étude suggèrent que les deux groupes de professeurs sont différents quant à la manière dont ils attirent l’attention des élèves sur les aspects essentiels impliqués dans la résolution du problème. Tout d’abord, tandis que les professeurs expérimentés se sont assurés de la compréhension du problème par les étudiants avant de chercher la solution, les professeurs débutants ne l’ont fait que lorsque des erreurs ont été commis par les étudiants. En deuxième lieu, tandis que les professeurs expérimentés ont admis un plus fort degré de participation des étudiants, les professeurs débutants ont adopté un rôle plus prédominant permettant un moindre niveau de participation des élèves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanton, M.L., Berenson, S.B., & Norwood, K. (2001). Using classroom discourse to understand a prospective mathematics teacher’s developing practice.Teaching and Teacher Education, 17, 227–242.CrossRefGoogle Scholar
  2. Briars, D.J., & Larkin, J.H. (1984). An integrated model of skill in solving elementary word problems.Cognition and Instruction, 1, 245–296.Google Scholar
  3. Cobb, P., & Bauersfeld, H. (1995).The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  4. Del Río, I., Sánchez, E., & García, R. (2000). Análisis de la interacción maestro-alumnos durante la resolución de problemas aritméticos.Cultura & Educación, 17/18, 41–61.Google Scholar
  5. Fuson, K.C. (1992). Research on whole number addition and subtraction. In D. Grouws (Ed.),Handbook of research on mathematics teaching and learning (pp. 243–275), New York: Macmillan.Google Scholar
  6. García, R., Rosales, J., & Sánchez, E. (2003). El asesoramiento psicoedagógico como construcción de significados compartidos. Un estudio sobre su dificultad.Cultura & Educación, 15(2), 129–148.CrossRefGoogle Scholar
  7. Green, J., & Dixon, C. (1993). Introduction to special issue. Talking knowledge into being: Discursive and social practices in classrooms.Linguistics and Education, 5(3–4), 231–239.CrossRefGoogle Scholar
  8. Hatano, G., & Inagaki, K. (1991). Sharing cognition through collective comprehension activity. In L. Resnick, J. Levine, & S. Teasley (Eds.),Perspectives on socially-shared cognition (pp. 331–348). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  9. Hogan, T., Rabinowitz, M., & Craven, J.A. (2003). Representation in teaching: Inferences from research of expert and novice teachers.Educational Psychologist, 38(4), 235–247.CrossRefGoogle Scholar
  10. Inagaki, K., Hatano, G., & Morita, E. (1998). Construction of mathematical knowledge through whole-class discussion.Learning and Instruction, 8, 503–526.CrossRefGoogle Scholar
  11. Kintsch, W. (1988). The role of knowledge in discourse comprehension: A Construction-Integration model.Psychological Review, 95(2), 163–182.CrossRefGoogle Scholar
  12. Kintsch, W. (1998).Comprehension: A paradigm for cognition. Cambridge: Cambridge University Press.Google Scholar
  13. Kintsch, W., & Greeno, J. (1985). Understanding and solving word arithmetic problems.Psychological Review, 92, 109–129.CrossRefGoogle Scholar
  14. Lewis, A.B., & Mayer, R.E. (1987). Students’s miscomprehension of relational statements in arithmetic word problems.Journal of Educational Psychology, 79(4), 363–371.CrossRefGoogle Scholar
  15. Mehan, H. (1979).Learning lessons: Social organization in the classroom. Cambridge, MA, Harvard University Press.Google Scholar
  16. Meyer, D.K., & Turner, J.C. (2002). Using instructional discourse analysis to study the scaffolding of student self-regulation.Educational Psychologist, 37(1), 17–25.Google Scholar
  17. Nathan, M.J., & Knuth, E.J. (2003). A study of whole classroom mathematical discourse and teacher change.Cognition and Instruction, 21(2), 175–207.CrossRefGoogle Scholar
  18. Nathan, M.J., Kintsch, W., & Young, E. (1992). A theory of algebra-word problem comprehension and its implications for the design of Learning Environments.Cognition and Instruction, 9(4), 329–389.CrossRefGoogle Scholar
  19. Reed, S.K. (1999).Word Problems: Research and curriculum reform. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  20. Reusser, K. (1988). Problem solving beyond the logic of things: contextual effects on understanding and solving word problems.Instructional Science, 17, 309–338.CrossRefGoogle Scholar
  21. Riley, M.S., & Greeno, J.G. (1988). Developmental analysis of understanding language about quantities of solving problems.Cognition & Instruction, 5(1), 49–101.Google Scholar
  22. Riley, N.S., Greeno, J., & Heller, J.I. (1983). Development of children’s problem solving ability in arithmetic. In H.P. Ginsburg (Ed.),The development of mathematical thinking (pp. 153–196). New York: Academic Press.Google Scholar
  23. Rosales, J., Iturra, C., Sánchez, E., & de Sixte, R. (2006). El análisis de la práctica educativa. Un análisis de la interacción profesor-alumnos a partir de dos sistemas de análisis diferentes.Infancia y Aprendizaje, 29(1), 65–90.CrossRefGoogle Scholar
  24. Sánchez, E., Rosales, J., & Cañedo, I. (1999). Understanding and communication in expositive discourse: An analysis of the strategies used by expert and pre-service teachers.Teaching and Teacher Education, 15, 37–58.CrossRefGoogle Scholar
  25. Sánchez, E., Rosales, J., & Suárez, S. (1999). Interacción profesor-alumnos y comprensión de textos. Qué se hace y qué se puede hacer.Cultura & Educación, 14/15, 71–89.Google Scholar
  26. Staub, F.C., & Reusser, K. (1995). The role of presentational structures in understanding and solving mathematical word problems. In C.A. Weaver III, S. Mannes, & C.R. Fletcher (Eds.),Discourse Comprehension: Essays in honour of Walter Kintsch (pp. 285–305). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  27. Stern, E. (1993). What makes certain arithmetic word problems involving the comparison of sets so difficult for children?Journal of Educational Psychology, 85, 7–23.CrossRefGoogle Scholar
  28. Van Dijk, W., & Kintsch, T.A. (1978). Toward a model of text comprehension and production.Psychological Review, 85, 363–394CrossRefGoogle Scholar
  29. Verschaffel, L., & De Corte, E. (1997). Teaching realistic mathematical modeling in the elementary school: a teaching experiment with fifth graders.Journal for Research in Mathematic Education, 28(5), 577–601.CrossRefGoogle Scholar
  30. Williams, S.R., & Baxter, J.A. (1996). Dilemmas of discourse-oriented teaching in one Middle School Mathematics Classroom.The Elementary School Journal, 97(1), 21–38.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisbon, Portugal/ Springer Netherlands 2008

Authors and Affiliations

  • Javier Rosales
    • 1
  • Josetxu Orrantia
    • 1
  • Santiago Vicente
    • 1
  • Jose M. Chamoso
    • 2
  1. 1.Department of Developmental and Educational PsychologyUniversity of Salamanca Faculty of EducationSalamancaSpain
  2. 2.Department of Didactics of Mathematical and Experimental SciencesUniversity of SalamancaFaculty of EducationSalamancaSpain

Personalised recommendations